Integers (\(\mathbb{Z}\)), reals (\(\mathbb{R}\)) and complex (\(\mathbb{C}\))

Hardware has limited approximations to them

Software extends hardware in many ways

Principles are largely language-independent

Apply to Python, Perl, Java, Excel, Matlab, C, . . .

. . . C++, Fortran, R, C#, Maple, Mathematica etc.

But mathematics and computing don’t match

Not just floating-point, nor even just hardware
DON’T PANIC

Course will give a map through the minefield

With moderate care, can avoid most problems
Course helps to recognise dangerous areas

May help to debug when things do go wrong
Knowing that something may happen is key

• Some problems you can only watch out for
Will give guidelines on how to do that
Beyond the Course

http://people.ds.cam.ac.uk/nmm1/Arithmetic/
Follow the link for further information /break
http://www.cl.cam.ac.uk/teaching/1011/FPComp/

There is some further reading in both of those
A few reasons are available – optional
Real Computing Made Real:
 Preventing Errors in Scientific and
 Engineering Calculations

by Foreman S. Acton

Good, clear book on avoiding precision loss etc.
Explains only how to prevent some forms of error!

 Doesn’t overlap with this course much
Consistency/Sanity Checking (1)

- Put in lots of this, kept simple
 E.g. check values are valid and realistic

- Pref. every entry/exit of major code unit
 Check most data being used/returned/changed

- No need to check everything, everywhere
 Aim is to detect failures early and locally

```c
if (speed < 0.0 .or. speed > 3.0e8) &
    call panic("Speed error in my_function")
```
Consistency/Sanity Checking (2)

Ideally, something like:

```python
def prevaricate (delay, reason) :
    check_delay(delay)
    check_reason(reason)
    . . .
    excuse = . . .
    check_reason(excuse)
    return excuse
```
Consistency/Sanity Checking (3)

- Write **sanity checker** for major data structures
 Easy to add checking calls for debugging

```c
    call sanity_upper (n, a, lda)
    call sanity_rect (n, nrhs, b, ldb)
    call dposv ('u', n, nrhs, a, lda, b, ldb, info)
    call sanity_upper (n, a, lda)
    call sanity_rect (n, nrhs, b, ldb)
```

$O(n^3)$ calculation – $O(n^2)$ checking cost
Benefits of Checking

May double time taken to get code to compile AND halve total time until it mostly works!

- Not restricted to numerical aspects
An old “software engineering” technique
Predates that term by many decades . . .

Won’t cover any more of this here, but see http://people.ds.cam.ac.uk/nmm1/Debugging/
Using Classes

Don’t be afraid to write your own class
You don’t need to use any more memory
Modern compilers will compile that efficiently
• You can then check the values systematically

Especially useful for arithmetics like complex
Could check just multiplication and slower actions
• Don’t forget to initialise on creation
Where Do Problems Arise?

Paradoxically, often for integer arithmetic! People get careless with simple aspects.

Real (i.e. floating-point) is a lot trickier. Most people are aware of that, in theory.

- But it isn’t as tricky as often thought. 60 years of Fortran use shows that one!

Complex is a little trickier, but not much.
Integers

• Mostly trivial, and just work as you expect. This course skips all of the simple aspects. Only three areas cause significant trouble.

• Almost all problems arise with overflow.

• Followed by signed/unsigned problems. This affects only some (C-like) languages.

• Followed by the division/remainder rules.

Will mention a few advanced features, as well.
Division/Remainder Rules

If both M and N are positive, M/N rounds down
And $(M/N)*N + \text{remainder}(M,N) = M$

• Language-dependent if either are negative
 Check its specification if you depend on that
 Alternatively write a run-time test, and fix up

And, of course, division by zero is an error
Consequently, so is remainder by zero

That’s all . . .
Unlimited Size Integers

- No limit on size, except memory and time
 - Built-in to Python, BigInt in Perl
 - Libraries (e.g. GMP) for C, C++, (Java, Fortran?)
 - Also Mathematica, Maple, bc etc.

Good packages are easy to use
- Eliminates overflow complexities
- But indefinite growth will crash program

And, only if you use very big numbers:
 - multiply/divide/remainder/conversion slow
Current Integer Hardware

Binary, twos’ complement, e.g. for 8 bits:

\[01010011 = 2^6 + 2^4 + 2^1 + 2^0 = 83 \]
\[11000101 = -2^7 + 2^6 + 2^2 + 2^0 = -59 \]

16, 32 and 64 bits, rarely 8 and 128 bits

Overflow wraps: \(2 \times 83 = -90 \) and \(4 \times 83 = 76 \)

- Your CODE may not wrap – see later

⇒ Means that \((M \times N) / N \) may not be \(M \)

And other, similar, invariants may fail
Problems with Wrapping

parameter \(n = 1800 \)
double precision \(d(n,n,n) \)
call init\((d,n*n*n) \)

Assume 64-bit system with 32-bit integers
Very common environment nowadays
Equivalent to calling \(\text{init}(d,1537032704) \) – Oops!

- Can’t avoid, so must watch out for it – how?
Checking for Wrapping

Either of the following will detect it

- Both cost very little in effort or time

\[
\text{n}_{\text{total}} = n \times n \times n \\
\text{if } (\text{n}_{\text{total}} / n) / n / = n \text{ call panic(...)}
\]

\[
\text{n}_{\text{total}} = n \times n \times n \\
\text{if } ((\text{n}_{\text{total}}/n)/n /= n) \text{ call panic(...)}
\]

- Even checking for negative bounds helps
 Will pick up over half of such cases!
Integer Overflow (1)

Some always use floating-point (Excel, Matlab)
May convert to floating-point (Perl, R)
Convert to unlimited size (Python but not numpy)
Very rarely, trap it and diagnose the failure

- All fairly safe options for most use

May wrap modulo $2^{|\text{bits}|}$ (Java, C#, numpy)
- Generally NOT what you want (see later)

May be UNDEFINED (C, C++, Fortran)
Integer Overflow (2)

Be warned: wrapping modulo $|2^{bits}|$ is dangerous
Any optimisation can cause truly horrible effects
Even with none, there are some very nasty gotchas

- Sometimes option to trap it, diagnose and stop
 NAG Fortran always does, gfortran –ftrapv enables it
 gcc –ftrapv and g++ –ftrapv will trap some overflows

- Using C# checked keyword raises an exception

- These are the best solutions, when available
Undefined Behaviour

Major cause of wrong answers, crashes etc.

- Effects are almost always unpredictable
 Even unrelated differences may have effects
- Sometimes debuggers misbehave or crash
- Simple tests are usually misleading
- Most books / Web pages are misleading

Undefined behaviour \neq system dependence

Reasons are beyond this course – please ask
Over-Simplified Example

\[B = C = D = 5000 \]
\[A = B \times C \times D = 445948416 \quad \text{Wrong} \]
\[E = A / D = 89189 \quad \text{Wrong} \]
print E: 89189 \quad \text{Wrong but consistent}

Fairly often actually compiles vaguely like:

\[A = B \times C \times D = 445948416 \quad \text{Wrong} \]
\[E = A / D = 89189 \quad \text{Wrong but consistent} \]
print E: 89189 \quad \Rightarrow \quad \text{print B \times C}
print E: 250000000 \quad \Leftarrow \text{But this is } E!
Integer Formatted I/O

• Representation not usually important
 Most people never need to know it

Can read or display in any base:
Bin. $01010011 = \text{dec. } 83 = \text{oct. } 133 = \text{hex. } A3$
May be explicit: $2r01010011$ or $0xa3$

Most formatted I/O is done in decimal, anyway!

Unix may use octal — what is 136? Or 0136?
Using Integers as Bits

You can treat integers as arrays of bits
 But not in Matlab or R, for good reasons
Bitwise AND, OR, NOT etc. make sense

Can even mix bitwise and arithmetic operations
All well-defined, portable and reliable

• Except for negative numbers
Keep all numbers non-negative and in-range
Negative numbers are for language lawyers
Shifting

Shift of N is multiply/divide by 2^N

- Don’t shift negatives or through sign bit
 It *may* work, but each language differs

- Keep all shifts *below* number of bits in word
 Python is a rare exception to this

See the extra foils for why – it’s bonkers!
A relic of *1950s* electronic constraints
Unsigned Integers

Mainly for C, C++, (& Java, Perl) users

Arithmetic modulo 2^{bits} (not $\text{GF}(2^N)$)
In 8 bits, $11000101 = 2^7 + 2^6 + 2^2 + 2^0 = 197$
As for hardware, numbers wrap round at 2^N

Numbers are always non-negative – e.g. $3-5 > 0$
• Divide/remainder aren’t modular

• Pure unsigned arithmetic is fairly safe
Mixing Signed and Unsigned

• **Signed/unsigned** interactions are **foul**
 Conversions are usually not what you expect

• It’s very tricky to avoid mixtures in **C/C++**
 Another **C/C++** warning – **char** may be either
 More details for **C/C++** in extra information

• A minefield in all languages that have it
 C/C++ people need to watch out for ‘**gotchas**’
Fixed-Point Arithmetic

Fixed number of digits after decimal point
Precision is part of variable’s type
Usually implemented as scaled integers

Heavily used for financial calculations
Rare in scientific computing, but in bc/dc etc.

Generally easy to use, except for:
• Rounding of multiplication/division
• Mixing precisions, conversion, etc.
• Special functions (sqrt/log/etc.)
Scaled Fixed-Point

Fixed-point with a separate scale factor
Common in 1950s – replaced by true floating-point

C# decimal has resuscitated it
Possibly using IEEE 754 decimal floating-point

- Almost always, it’s a complete waste of effort
True fixed-point or floating-point are better

It’s closely related to unnormalised floating-point
Also a proposed DEC64 format (not covered further)
Rational Arithmetic

One of the main modes in Mathematica
Combined with unlimited size integers

Only serious problem is explosion of size
Otherwise, it works just as you would expect

Fixed size rationals have their advantages
Sometimes called fixed-slash arithmetic
Really esoteric – ask offline if interested
Basics of Floating-Point

Also called (leading zero) scientific notation

\[\text{sign} \times \text{mantissa} \times \text{base}^{\text{exponent}} \]

E.g. \[+0.12345 \times 10^2 = 12.345 \]

\[1 > \text{mantissa} \geq 1 / \text{base} \] ("normalised")

\[P \text{ sig. digits} \Rightarrow \text{relative acc.} \times (1 \pm \text{base}^{1-P}) \]

Also \[-\text{maxexp} < \text{exponent} < \text{maxexp} \] – roughly

Like fixed-point \[-1.0 < \text{sign/mantissa} < +1.0 \]

Scaled by \[\text{base}^{\text{exponent}} \] (\[10^2 \] in above example)
Floating-Point versus Reals

• Floating-point effectively not deterministic
 Predictable only to representation accuracy
 Differences are either trivial – $\times (1 \pm base^{1-P})$
 Or only for infinitesimally small numbers

• Fixed-point breaks many rules of arithmetic
• Floating-point breaks even more
 Wrong assumptions cause wrong answers

• The key is to think floating-point, not real
 Practice makes this semi-automatic
Invariants (1)

• Both are **commutative**:
 \[A + B = B + A, \quad A \times B = B \times A \]

• Both have **zero**, **unity** and **negation**:
 \[A + 0.0 = A, \quad A \times 0.0 = 0.0, \quad A \times 1.0 = A \]
 Each A has a B = \(-A\), such that A + B = 0.0

• Both are **fully ordered**:
 \[A \geq B \text{ and } B \geq C \text{ means that } A \geq C \]
 \[A \geq B \text{ is equivalent to NOT } B > A \]
Invariants (2)

The following are approximately true
Don’t assume that they are exactly true

- Neither associative nor distributive:
 (A+B)+C may not be A+(B+C) (ditto for *)
 (A+B)−B may not be A (ditto for * and /)
 A+A+A may not be 3.0*A
Invariants (3)

• They do not have a multiplicative inverse: Not all \(A \) have a \(B = 1.0/A \), such that \(A \times B = 1.0 \)

• Not continuous (for any of +, −, * or /):
 \(B > 0.0 \) may not mean \(A + B > A \)
 \(A > B \) and \(C > D \) may not mean \(A + C > B + D \)
 \(A > 0.0 \) may not mean \(0.5 \times A > 0.0 \)
Remember School Maths?

Above is true for all fixed-size floating-point
Whether on a computer or by hand in decimal

• But were you taught that at school?

It doesn’t cause too much trouble
But it does take some getting used to
Current Floating-Point Hardware

IEEE 754 a.k.a. IEEE 854 a.k.a. ISO/IEC 10559
http://754r.ucbtest.org/standards/754.pdf
Binary, signed magnitude – details are messy

- 32-bit = 4 byte = single precision
 Accuracy is 1.2×10^{-7} (23 bits),
 Range is 1.2×10^{-38} to 3.4×10^{38}

- 64-bit = 8 byte = double precision
 Accuracy is 2.2×10^{-16} (52 bits),
 Range is 2.2×10^{-308} to 1.8×10^{308}
Other Sizes of Floating-Point

- Don’t go there – ask if you might need to IEEE 754 dominates people’s thinking

May have 128-bit IEEE 754R floating-point
In several different variations . . .
It may be very much slower than 64-bit

Exact FP arithmetic usually futile (explosion)
Interval arithmetic trendy but little better
Arbitrary precision is easy, but out of fashion
 but Mathematica has it (almost unusably)
Intel/AMD Arithmetic

• Avoid it completely if you can
 Generally becoming less used
 Compilers/packages often use it internally
• One cause of differences in results

80-bit: accuracy is 1.1×10^{-19} (63 bits),
 Range is 3.4×10^{-4932} to 1.2×10^{4932}
Typically stored in 12 or 16 bytes (96 or 128 bits)

http://www.intel.com/design/...
 .../pentium4/manuals/index_new.htm
Decimal Floating-Point (1)

Added to IEEE 754R at IBM’s instigation
Both IBM and Intel were going to put it in hardware
One Python module emulates it (in software)
It is beginning to look doubtful that it will take off

• It is NOT a panacea – OR any worse
Exactness claims (Python etc.) are propaganda
Try π, 1.0/3.0, 1.0125, scientific code

It is claimed to help emulate decimal fixed-point
• That is complete and utter hogwash
Scientific programmers aren’t interested, anyway
Decimal Floating-Point (2)

In binary floating-point, if $a \leq b$:

\[a \leq a/2 + b/2 \leq b \quad \& \quad a \leq (a + b)/2 \leq b \]

But not necessarily in decimal floating-point

The other “gotchas” are extremely arcane
It may look more accurate, but it isn’t

Writing portable code is easier than it appears
NAG was base-independent before 1990

But Intel have dropped it and IBM has backed off
• Will it ever be relevant to scientists? Probably not
Denormalised Numbers

- Only in **IEEE 754** systems, and not always
- **Minimum exponent** and zeroes after point

 E.g., in decimal, 0.00123 × 10⁻³⁰⁸

- Regard numbers like that as mere noise

- Replaced by **zero** if too small (**underflow**)
 Never trapped nowadays – codes fail if it is

- Numeric advantages and disadvantages
 Can be **very slow** – may take **interrupt**
 Often **option** to always replace by **zero**
Denorms and Underflow

- Not generally a major problem
 - Use **double precision** to minimise traps
 - Almost always safe to replace by zero

\[(A/2.0) \times 2.0 \text{ may not be } A\]
\[A > 0.0 \text{ does not mean } 2.0 \times A > 1.5 \times A\]
\[B > C \text{ does not mean } B - C > 0.0\]
And many others . . .

- **Hard underflow** code mishandles **denorms**
 - See later about **binary I/O**
Error Handling and Exceptions

Here be dragons …

The following is what you **NEED** to know
Most of the details have been omitted
Will return to a few aspects later

- **PLEASE** contact me if you hit a problem
Other Exceptional Values

Zeroes are signed – but try to ignore that

- $\pm\text{infinity}$ represents value that overflowed
 Not necessarily large – e.g. $\log(\exp(1000.0))$

- NaN (Not-a-Number) represents an error
 Typically mathematically invalid calculation

In theory, both propagate appropriately

- In practice, the values are not reliable
What Can Be Done?

Consistency/sanity checking – yes, Yes, YES!

- Double precision reduces overflow problems
 Can run faster, by avoiding exceptions/denorms

- Don’t assume first catch is first failure
- Don’t assume no catches means no failures

The above rules apply to most classes of error
E.g. array bound overflow, pointer problems
Floating-Point Overflow

Mathematica uses a fancy format and rarely overflows
Excel delivers “NUM!”
NAG Fortran always traps overflow
Some other compilers have a trapping option

All others deliver an infinity of right sign
numpy default gives a warning but not an exception

In itself, that would be perfectly reasonable and safe
I.e. it’s just using the affine extension of the reals
⇒ But remember the optimisation problems!
Divide by Zero etc.

Python, Perl, Excel, Matlab, Mathematica trap $A/0.0$
C, C++, Fortran rarely do (except for NAG)
Java, R, C# don’t treat it as an error!

⇒ If not, divide-by-zero also gives infinity

numpy behaves exactly as for overflow

The sign of the infinity depends on the sign of zero
This is claimed to be “meaningful” – ha, ha!
Infinities and Errors

If we have $B = A - A; \quad C = -B; \quad D = C + 0.0$;
All of $B = C = D = 0.0$
But $1.0/B \neq 1.0/C$ and $1.0/C \neq 1.0/D$

\Rightarrow Don’t trust the sign of infinities

If you can, trap errors, diagnose and stop
In IEEE 754 terms, the serious errors are:
Overflow, divide by zero and invalid
Trapping

NAG Fortran always traps arithmetic errors

With gfortran/gcc/g++, use
\[-ffpe-trap=invalid,zero,overflow \]

With Intel (ifort/icc/icpc), use \[-fpe0\]

With numpy use:
\[\text{seterr(over='raise',divide='raise',invalid='raise')} \]
Or can use ‘call’ rather than ‘raise’
Advanced Example

```fortran
program fred
    double precision :: x = -1.0d-300
    do k = 1, 6
        x = x - 0.9d0*x
    print *, 1.0d0/x
    end do
end program fred
```

-1.0E+301
-1.0E+302
...
-1.0E+308
-Infinity
...
-Infinity
+Infinity
+Infinity
Signs of Zero and NaN

The same applies to functions that test signs
• Functions like Fortran SIGN, C `copysign` And many others in C99 and followers

The signs of zeros and NaNs are interpreted
Never mind that those signs are meaningless

• Regard the result as an unpredictable value
See the extra information for more details
NaNs and Error Handling

Invalid operations may result in a NaN

$0.0/0.0 = \infty/\infty = \infty - \infty = \text{NaN}$

Operations on NaNs usually return NaNs

- But NaN state is very easy to lose
 C99, Java actually REQUIRE it to be lost

Few examples of MANY traps for the unwary

int(NaN) is often 0, quietly
max(NaN, 1.23) is often 1.23

Comparisons on NaNs usually deliver false
Sanity Checking and NaNs

if \(x \neq x \) then we have a NaN – in theory
In practice, may get optimised out

But don’t make all tests positive checks
First example in course would be better as:

```plaintext
if (speed > 0.0 .and. speed < 3.0e8) then
    continue
else
    call panic(’Speed error in my_function’)
endif
```
Complex Numbers

- Generally simple to use (but C99’s aren’t)
 Always (real, imaginary) pairs of FP ones
 Python, Fortran, C++, Matlab, R, C99 (sort of)
 Optional package for Perl, Java
 Fortran usually most efficient for them

I/O usually done on raw FP numbers
- Easy to lose imaginary part by accident
 Special functions can be slow and unreliable

- Don’t trust exception handling an inch
 It will often give wrong answers, quietly
 Reasons are fundamental and mathematical
Mixed Type Expressions

Integer ⇒ float ⇒ complex usually OK
N-bit integer ⇒ N-bit float may round weirdly

Float ⇒ integer truncates towards zero
Complex ⇒ float is real part
• You won’t generally get any warning

Overflow is undefined in C, C++, Fortran
Java is defined, but very dangerous
Other languages are somewhat better
• Infinities and NaNs are Bad News
Complex and Infinities or NaNs

• This is a disaster area, to put it mildly
 Don’t mix complex with infinities or NaNs
 All such code is effectively undefined

• That means float ⇒ complex, too
 If the former has any of the exceptional values

See the extra information for some sordid reasons

• Regard complex overflow as pure poison
 Put in your own checks to stop it occurring
Other Arithmetics

Let’s use Hamiltonian Quaternions as an example
• Not going to cover them in this course!

Very few languages have them built-in
Can get add-on packages for most languages
Type extension can make look like built-in types

• Almost no extra problems over complex numbers
Main difference is that they are not commutative

Other advanced arithmetics are similar
For example, true Galois fields and so on
Generally safe (including number \Rightarrow string)

- Accuracy of very large/small may be poor

- Values like 0.1 are not exact in binary
 Decimal 0.1 = binary 0.0001100110011001...
 Only 6/15 sig. figs guaranteed correct
 But need 9/18 sig. figs for guaranteed re-input

- Check on infinities, NaNs, denorms
 If implementation is poor, will fail with those
Formatted Input

Far more of a problem than output

- Overflow and errors often **undefined**
 Often doesn’t detect either or handle sanely
 Behaviour can be very weird indeed

Infinities, NaNs, denorms are always unreliable
Don’t trust the implementation without checking
- Always do a minimal cross-check yourself
Undefined Behaviour and I/O

Generally, I/O conversion is predictable
• But only for one version of one compiler
But does mean that you can rely on tests

Actual conversion is in library, not code
All sharing compilers may behave the same way

Any upgrade may change behaviour
• It’s worth preserving and rerunning tests
Binary (Unformatted) I/O

Shoves internal format to file and back again
Fast, easy and preserves value precisely
• Don’t use between systems without testing

• Depends on compiler, options, application
Different languages use different methods
Solutions exist for Fortran ⇔ C
Derived/fancy types may add extra problems

• Can give almost complete checklist
Checklist for Binary I/O

• Must use **same sizes, formats, endianness**
Sizes are **32/64**-bit mode, precision etc.

Formats are primarily application or language
Basic data types use the **hardware formats**
Derived types depend on the compiler etc.

“**Little endian**”: Intel/AMD, Alpha
“**Big endian**”: SPARC, MIPS, PA-RISC, PowerPC
Either: Itanium Mixed: dead?
May be compiler/application conversion options
Cross-Application Issues

Most compilers & applications are compatible
Cross-system transfer can be tricky
All systems now use very similar conventions

- But there are occasional exceptions
 Especially with Fortran unformatted I/O

You probably won’t hit problems with this
If you do, ask for help – it’s not a big problem
IEEE 754 Issues

May be problems with denorms, infinities, NaNs
Can be chaos if code can’t handle them

- Easy to write a simple test program
 Just write an unformatted file with them in
 Read it in, and check that they seem to work

0.0, ±10^k (k = −323 . . . + 308), ±inf, NaN
Compare, add, subtract, multiply and divide
 on all pairs – c. 8 million combinations
Crudely, print 12 digs, and use diff
Single Precision (32-bit)

• Do NOT use this for serious calculations
 Cancellation / error accumulation / conditioning
 Much more likely to trip across exceptions

\[x^2 + 10^4 \times x + 1 \]
roots are c. 10000 and 0.001

\[(-b \pm \sqrt{b^2 - 4ac})/(2a) \]
in 32-bit
Delivers c. 10000 and true zero – oops!

• Lots of memory allows for big problems
 Even stable big problems need more accuracy
 \[1.2 \times 10^{-7} \]
 often multiplied by matrix dimension
GPU Issues

Single precision is a lot faster than double
 • You may need to use it for performance

 • Some problems are very stable – no problem
 But, in general, this is a major headache

 • First check for a more stable algorithm

 • There are precision-extension techniques
 Commonly used 30+ years ago, now needed again
 Ask your supervisor to contact me if it might help
Numerical Analysis (1)

Analyses effects of approximate calculations
Not covered here – DAMTP has 3 courses on it

Recommended to use a package or library:
• NAG library is most general reliable library
• Good open-source libraries (e.g. LAPACK)
• Many others are seriously unreliable or worse
• Do NOT trust Numerical Recipes or the Web

http://people.ds.cam.ac.uk/nmm1/Arithmetic/
Numerical Analysis (2)

Many good, often old, *numerical analysis* books
Many are hard going and expensive or out-of-print
Following is good, affordable and available

Numerical Methods That Work: an Introduction to Numerical Techniques and Problems
by Foreman S. Acton

Problem is it really **IS** an introduction
And, even then, it’s not exactly bedtime reading!
Accuracy and Instability

Results almost never better than input (GIGO)
• Do NOT assume machine precision in result

Errors can often build-up exponentially
Single \Rightarrow double may not help
• In that case, must improve algorithm

Trivial (not very realistic) example:
K’th differences of x^K, $x=0.5,0.51,...,1.99,2.0$
In D.P., 1 sig. fig. at $K=7$, nonsense thereafter
Cancellation (1)

- Low-level cause of most loss of accuracy
 Caused by subtracting two nearly-equal values

Obviously, includes adding two with different signs
- But also dividing (and multiplying by inverse)

Assume numbers have P digits of precision
X and Y have Q leading digits in common
$\Rightarrow X-Y$ and $X/Y-1.0$ have precision $P-Q$

- Restructuring expressions can help a lot
Cancellation (2)

Where it matters, consider changes like the following:

\[(X+D)^2 - X^2 \Rightarrow (2X+D) \times D\]
\[x^5 - y^5 \Rightarrow (x^4+x^3y+x^2y^2+xy^3+y^4) \times (x-y)\]
\[\sin(x+d) - \sin(x) \Rightarrow \sin(x) \times (\cos(d)-1.0) + \cos(x) \times \sin(d)\]

I haven’t used this, but you might like to try:
http://herbie.uwplse.org/
Cancellation (3)

• Watch out for **large summations**, too
 Look up Kahan summation for a better method
 I use another, or emulate extended precision:
 http://people.ds.cam.ac.uk/nmm1/C++/...
 ../Exercises/Chapter_24/fancy_accumulate.cpp
 ../Exercises/Chapter_24/fancy_inner.cpp

Unfortunately, it may be **implicit** in the **algorithm**
Common with ones that use **numerical derivatives**
Realistic Cases of Problem

Linear equations, determinants, eigensystems
Solution of polynomials, regression, anova
ODEs, PDEs, finite elements etc.

• Any method works in simple, small cases
 Poor ones fail in complex, larger ones

• Put consistency checks in your program
• Use high-quality algorithms and libraries
• Try perturbing your input and check effects
• As always, find out what the experts advise
Topics Not Covered (1)

The details of any of the above topics
Too many other topics to list

Examples of areas that could have courses:

Parameterisation in C, C++, Fortran etc.
Interval arithmetic and its uses
Introduction to numerical analysis
C99 and its consequences
Topics Not Covered (2)

Older or rarer systems/problems/issues
Number handling in external protocols
Model, use and analysis of IEEE 754
IEEE 754R and decimal floating-point
Interactions with operating systems
Implementation techniques and implications
Mathematical models of computer arithmetic
And so on . . .
Reminder – Trapping Options

NAG Fortran traps everything by default

For gfortran/gcc/g++ use
 –ftrapv –ffpe–trap=invalid,zero,overflow

For Intel (ifort/icc/icpc), use –fpe0

For Python numpy use
 seterr(over='raise',divide='raise',invalid='raise')

For C# use checked keyword or option