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Abstract – Contact models including an elastic and a dissipative force are widely used to
model inelastic granular collisions. Whilst there exists an analytical solution for the linear spring-
dashpot (LSD) model, for the more practically important non-linear models often only the
asymptotic behaviour is known. In this letter, we demonstrate that if the Hertzian contact model
is complemented by a damping force proportional to 1/4-power of the normal deformation, it is
possible to map its behaviour onto the LSD model and hence obtain simple analytical relationships
between the model parameters and the characteristics of the granular collision. In practice, this
allows the prediction of parameters for discrete element models of powder flow and compaction
by using experimental observables such as restitution coefficient and collision time as input data.

Copyright c© EPLA, 2011

Introduction. – Modelling granular flow in applica-
tions ranging from processing pharmaceutical powders [1]
to industrial mills and fluidised beds requires realistic
description of binary collisions between the particles [2].
Even if their shape is assumed to be spherical, the choice
of the constituent force laws and their parametrisation is
not a simple task [3–6]. A number of observables such as
collision time, restitution coefficient, maximum and resid-
ual deformations can be used to get insight into the inter-
play between elastic, plastic, viscous and other physical
phenomena relevant to the collision process. As it is often
difficult to choose between various models [4,7] when they
all can adequately replicate the experimental observables
within the region where the model parameters were fitted,
choosing the most computationally simple model might be
advantageous in this case.
In this letter, we concentrate on two relatively simple

and widely used phenomenological models: 1) a linear
elasticity model with a linear damping force, also known
as the linear spring-dashpot (LSD) model, and 2) a non-
linear damped Hertzian spring-dashpot (HSD) model,
describing an inelastic collision of two spheres. Both
models predict a restitution coefficient independent of the
impact velocity but differ in their prediction of the force-
deformation relationship and the collision time. Whilst
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the linear model predicts collision time to be independent
of the impact velocity, its non-linear counterpart predicts
shorter collision times at higher impact velocities, which
agrees with the experiments on particle collision. The
difficulty with using the more realistic [8] non-linear
model is the lack of analytical relationships between the
model input parameters such as damping coefficient and
the experimental observables such as the coefficient of
restitution, which is the issue we would like to resolve
in this letter. Despite the absence of a simple analytical
solution for the HSD model, we demonstrate that a
number of useful analytical relationships can still be
derived.
The equation of motion describing the collision of two

bodies of masses m1 and m2 can be written in the most
general form as

mδ̈+Fdis(δ, δ̇)+Fcons(δ) = 0, (1)

where m=m1m2/(m1+m2) is the reduced mass,
Fdis(δ, δ̇) is the total dissipative force and Fcons(δ) is
the total conservative force including, but not limited
to elasticity. Here positive definite deformation δ is a
function of the particle radii r1 and r2 and the separation
of their centres d defined as

δ =max [0, r1+ r2− d]. (2)

One of the simplest contact models in common use is the
linear spring-dashpot (LSD) model for which Hooke’s law
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is used to describe Fcons(δ) = kδ and eq. (1) becomes

δ̈+2γδ̇+w20δ= 0, (3)

where w0 =
√
k/m is the frequency of the undamped

harmonic oscillator and the damping coefficient γ is
responsible for energy dissipation. The LSD model is
widely used due to the existence of simple analytical rela-
tionships between parameters k and γ and experimental
observables such as collision time τ and restitution coeffi-
cient ε, with the latter defined as the ratio of the relative
velocities after and before the collision. In the notation of
eq. (1), the restitution coefficient is defined as

ε=− δ̇(τ)
δ̇(0)
. (4)

For the under-damped case in which w0 > γ, the initial
conditions δ(0) = 0 and δ̇(0) = v0 result in the following
solutions for the deformation:

δ(t) =
v0

w1
exp(−γt) sin(w1t) (5)

and deformation rate:

δ̇(t) =
v0

w1
exp(−γt) [w1 cos(w1t)− γ sin(w1t)] , (6)

where w1 =
√
w20 − γ2 is the frequency of the damped

oscillator. If the duration of the collision is taken as half
the period of the oscillation, defined as δ(τ) = 0 in eq. (5),
then the collision time is τ = π/w1. Using this value for τ
in eq. (6) and substituting it into eq. (4) gives

ε= exp

(
−γπ
w1

)
. (7)

The inverse relationship

γ =
− ln ε√
ln2 ε+π2

w0 (8)

allows us to choose the correct value for parameter γ in
eq. (3) if the experimental value for ε is known. Since the
impact velocity v0 does not enter eq. (8), the LSD model
predicts that the restitution coefficient is independent of
v0. The same is true for the collision time τ = π/

√
w20 − γ2,

which depends only on the parameters of eq. (3) but not
on v0.
In a collision of two elastic spheres with radii r1 and r2,

the integration of Hooke’s law over the area of deformation
results in a nonlinear relationship known as Hertz’s law:

FHertz(δ) =
4Eeff

√
reff

3
δ
3
2 , (9)

where 1/Eeff = (1− ν21)/E1+(1− ν22)/E2 is a function of
elastic properties of the bulk materials with Young’s
moduli E1 and E2 and Poisson’s ratios ν1 and ν2 and
reff = r1r2/(r1+ r2) is the effective radius. Equation (9)

is true for relatively small deformations and it assumes
that material properties are isotropic and do not change
under load. It can also be extended to include, for example,
cohesive interactions [9,10] not included in our simple
model.
If eq. (9) is used to describe the conservative force in

eq. (1), the expression for the dissipative force must also be
non-linear to ensure that the restitution coefficient ε does
not increase with the impact velocity [11]. Experimen-
tal data often indicates that ε decreases with the impact
velocity [5], albeit very slowly. Therefore, one of the two
most commonly used non-linear expressions for the dissi-
pative force provides a decreasing restitution coefficient
as described, for example, in refs. [12] and [13], whereas
the other results in a constant restitution coefficient as
described below.
In 1992, Tsuji et al. [14] demonstrated that a dissipative

force of form

Fdis(δ) = α(ε)
√
mKδ

1
4 δ̇, (10)

where K = 4/3Eeff
√
reff is the coefficient in front of the

δ
3
2 term in eq. (9), similar to the LSD model above, will
result in a velocity-independent coefficient of restitution.
As there were no analytical expression for α(ε) found
at the time, the suggested recipe for choosing parameter
α was simply to read its value of α(ε) graph calculated
numerically and shown in fig. 4 in the original manuscript
or to use a value from table 1 in ref. [15]. This approach
or direct numerical integration was widely adopted since
for adjusting the damping coefficient to obtain the desired
coefficient of restitution.
In this letter we demonstrate how to map the Hertzian

spring-dashpot (HSD) model described by eqs. (9) and
(10) onto the LSD model and hence find the analytical
solution for α(ε).

Solution for Hertzian spring-dashpot (HSD)
model. – Similarly to eq. (3), the equation of motion for
the damped Hertzian oscillator can be written as

δ̈+α(ε)Ω0δ
1/4δ̇+Ω20δ

3/2 = 0, (11)

where parameter Ω0 =
√
K/m has dimensions of

1/(sm1/4) and parameter α(ε) is identical to that in the
original work by Tsuji et al. [14]. Since v(t) = dδdt and

δ̈= dδdt
dv
dδ = v

dv
dδ , eq. (11) can also be written as a set of

coupled differential equations:

v
dv

dδ
+α(ε)Ω0δ

1/4v+Ω20δ
3/2 = 0, (12)

v(t) =
dδ

dt
. (13)

Consider substituting the function δ(t) by a function x(t)
such as

δ=Axn and dδ= nAxn−1dx. (14)
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This transforms eq. (12) into

v
dvA−1x1−n

ndx
+α(ε)Ω0A

1/4xn/4v+Ω20A
3/2x3n/2 = 0.

Note that if 1−n= n/4, which is true for n= 4/5, the
powers of x become the same for the first and the second
terms, and division of all three terms by x1/5 gives

v
5dvA−1

4dx
+α(ε)Ω0A

1/4v+Ω20A
3/2x= 0. (15)

The next step is to choose A such that the coefficients in
front of the first and the third terms become identical, i.e.
5A−1/4 =A3/2 or A= (5/4)2/5, which after substitution
and normalisation gives simply

v
dv

dx
+
2√
5
α(ε)Ω0v+Ω

2
0x= 0. (16)

This equation can be directly compared to eq. (3) for the
LSD model if, similarly to eq. (8), one uses

α(ε) =
−√5 ln ε√
ln2 ε+π2

. (17)

This is the function depicted as ε(α) in fig. 4 of the original
work by Tsuji et al. [14].
Note that time t does not enter eq. (16) explicitly and

it can be viewed as a differential equation for the phase
space trajectory v(x). Therefore, if numerical values of w0
and Ω0 are identical, the phase space trajectory for the
Hertzian oscillator v(δ) can be obtained from that for the
corresponding LSD model by rescaling the coordinate axis
while keeping the velocity axis unchanged.

Mapping the HSD model onto the LSD model.
– Assuming that all the parameters of the HSD model
are known, we shall now demonstrate how to calculate
its phase space trajectory v(δHSD) analytically. To ensure
that eqs. (16) and (3) are identical, we assume that the
mass m and the impact velocity v0 in the corresponding
LSD model are identical to those in the HSD model. A
further necessary condition is the equality of the numerical
values for w0 and Ω0 (or

√
k/m and

√
K/m) which is

automatically satisfied if the unit of length is set to ( k
K
)2.

For a collision between two identical spheres of diameter
d, reff = d/4 and K = 2/3Eeff

√
d, it is convenient to set the

unit length as d, as it is independent of the impact velocity,
by adjusting the spring constant k such that ( k

K
)2 = d.

The latter condition implies that k= 2/3Eeffd with which
eqs. (16) and (3), when expressed in reduced units (length
being measured in units of d and velocity in units of v0),
become identical to each other with

w∗0 =Ω
∗
0 =

2√
π

√
Eeff/ρ

v0
, (18)

where ρ is the particle density.
For practical applications, the complete procedure for

finding v(δHSD) is as follows. First, the solution to the LSD
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Fig. 1: (Colour on-line) The deformation-velocity phase space
trajectory during a collision of two particles described by the
LSD (solid line) and HSD (dashed line) and both characterised
by a restitution coefficient of 0.54.

model with k= 2/3Eeffd, restitution coefficient ε, mass m
and impact velocity v0 identical to those of the HSD model
should be found. Second, the deformation δLSD should be
rescaled such that

δHSD

d
= (5/4)2/5

(
δLSD

d

)4/5
, (19)

while the corresponding velocities remain unchanged.
As an example, we demonstrate the deformation-

velocity phase plane calculated for a collision of two 1 cm
spheres made of compacted microcrystalline cellulose
(MCC), a common pharmaceutical excipient used to
produce tablets. The restitution coefficient of 0.54 was
deduced from a series of ball-drop experiments, and
Young’s modulus E = 6GPa [16] and Poisson’s ratio
ν = 0.3 were used to produce data shown in fig. 1. The
solid line in fig. 1 corresponds to the equivalent LSD
model calculated as described above, whereas the dashed
line was obtained using eq. (19). Both collisions start
at the upper left corner where the deformation is zero
and the velocity is at its maximum value. The maximum
deformation is then reached as velocity goes through zero,
after which the rebound process starts as indicated by
the negative values of velocity.

Maximum deformation. – Using energy conserva-
tion, it is straightforward to calculate the maximum defor-
mation in a collision described by either the LSD or HSD
model without dissipation. However, if some dissipation
is present, then the work done by the dissipative forces is
difficult to integrate. Since the maximum deformation is
achieved when the velocity turns zero, for the LSD model
eq. (6) predicts that this will take place at time

t=
1

w1
arctan

w1

γ
. (20)
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By substituting this time into eq. (5) and taking into
account that w20 =w

2
1 + γ

2, we obtain the maximum defor-
mation for the LSD model:

δLSDmax =
v0

w0
exp

(
− γ
w1
arctan

w1

γ

)
. (21)

Using eq. (4), for a nearly elastic collision when γ�w0,
eq. (21) can be approximated by simply

δLSDmax ≈
v0

w0

√
ε. (22)

The maximum deformation for the HSD model can be
calculated by applying the transformation (eq. (19))
derived in the previous section.

Collision time. – Alongside with the coefficient of
restitution, the time of the collision, τ , is often used for
model parametrisation of granular collisions [4]. As we
demonstrated in the introduction, τ does not depend on
the impact velocity v0 for the LSD model and is given as
τ = π/

√
w20 − γ2. The collision time of two elastic spheres

without any dissipation can be calculated analytically
[17] as

τHertz = 2.214

(
ρ

Eeff

)2/5
d

v
1/5
0

, (23)

which decreases as v0 is increased.
It is possible to calculate the collision time from the

phase trajectory, as τ =
∑
∆τi =

∑ ∆xi
vi
, where the sum is

taken along the phase trajectory on both compression and
rebound paths. At a given ε, the LSD model predicts that
both the deformation and its rate are linearly proportional
to v0 (see eqs. (5) and (6)). Therefore, as the transforma-
tion of the space trajectory is affine, the ratios ∆xi

vi
are

not affected by varying v0 and the collision time remains
constant. For the HSD model, however, the x axis changes

in proportion to v
4/5
0 according to eqs. (5) and (19), while

the v axis still varies in proportion to v0:

τHSD ∝
∑ ∆

(
v0
w1
exp(−γti) sin(w1ti)

)4/5
vi

, (24)

where ti is the time measured for the LSD model when
its phase coordinates are (xi; vi). The net effect for the

inelastic collision with arbitrary ε is that τ ∼ 1/v1/50 , which
is consistent with eq. (23) for the special case of ε= 1.
This means that, similarly to eq. (23), for any given
ε the collision time as a function of v0 is a straight
line with a slope of −1/5 when plotted on a double
logarithmic scale. Figure 2 shows this for the case of
ε= 0.1 and ε= 0.01 together with the completely elastic
collision for which ε= 1. Here we have kept all HSD model
parameters for the MCC granule unchanged except for the
restitution coefficient and calculated the collision times
numerically by integrating the equation of motion. The
set of horizontal lines in fig. 2 shows collision times for the
corresponding LSD models.
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Fig. 2: (Colour on-line) Collision times calculated using the
LSD (horizontal lines) and HSD (inclined lines) models for
different values of the restitution coefficient ε.

Both linear and non-linear models predict that higher
dissipation or lower values of restitution coefficient ε
increases the collision time as demonstrated by an upward
shift of the lines in fig. 2. For the LSD model, the ratio
between the collision time for an oscillator described by
restitution coefficient ε, τLSD(ε), to that for a completely
elastic collision, τLSD(1), is equal to w0/w1 or in terms
of ε:

τLSD(ε)

τLSD(1)
=

√
ln2 ε+π2

π
. (25)

Despite the analytical expression for δHSD(t) not being
available even for undamped Hertzian spring, it is rela-
tively simple to find the asymptotic behaviour of the colli-
sion time for the lightly damped HSD model, i.e. at ε close
to 1. By rewriting eq. (24) as

τHSD ∝
∑ ∆δLSDi

vi

(
v0

w1
exp(−γti) sin(w1ti)

)−1/5
, (26)

and noting that w1 =w0 and exp(−γti)−1/5 = 1+ γti/5 at
first-order approximation, we obtain

τHSD ∝
∑ ∆δLSDi

vi

(
v0

w0
sin(w0ti)

)−1/5(
1+
γti

5

)
. (27)

The multipliers (1+ γti/5) describe the collision time
increase along the phase trajectory compared to the
completely elastic case when γ = 0. Since the phase trajec-
tory of an elastic collision is the same on the compres-
sion and the rebound path, there will be two identical
fractions ∆xi

vi
entering the sum shown in eq. (27), one

multiplied by (1+ γti/5) and the other multiplied by
(1+ γ(τLSD(0)− ti)/5) (here we used the fact that colli-
sion time does not change with ε at first-order approxima-
tion according to eq. (25)). By rearranging the terms in
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Fig. 3: (Colour on-line) Collision time increase due to the
dissipative forces in the LSD (the dashed line) and HSD (circles
and the solid line) models.

eq. (27), grouping them together and taking into account
eq. (4) and that τLSD(0) = π/w0 we obtain

τHSD(ε)

τHSD(0)
= 1− ln ε

10
. (28)

Using numerical methods, we verified that the numerical
value of the first-order expansion in terms of ln ε is indeed
0.1 with accuracy of about one part per million. We also
found that the quadratic fit

τHSD(ε)

τHSD(1)
= 1− 0.1 ln(ε)+ 0.0473 ln2(ε), (29)

provided a good description of the exact collision times.
This analytical relationship is depicted in fig. 3 as a
solid line together with the circles that correspond to the
results of numerical integration of eq. (11). The analytical
relationship for collision time increase for the LSD model
(eq. (25)) is depicted in fig. 3 by the dashed line for
comparison. Note that for both the LSD and HSD models,
the change in the collision time due to dissipation is
relatively small as the dissipative force decreases both the
rate of deformation and its depth. Hence the collision time
is only weakly affected.

The end of the collision. – Until now we followed
convention in identifying the end of the collision by
the moment when the particle deformation becomes zero
again. However, it has been recently highlighted that this
approach implies the presence of a fictitious attractive
force at the rebound [18,19]. This can also be observed
at the bottom part of fig. 1 where velocity at the rebound
reaches an extremum and then decreases before the defor-
mation becomes zero. As there are no attractive forces in
the model, there is an argument that the particles are
expected to lose contact when the velocity reaches its
maximum and the total force turns to zero [18]. Identi-
fying the end of the collision by this event would increase

the actual coefficient of restitution and will make it larger
than the parameter ε entering eq. (8). The collision time,
on the other hand, will be reduced.
Therefore, if one chooses to restrict the total force to

be repulsive, appropriate adjustments have to be made to
the input value of ε as described for the LSD model in
ref. [18]. Due to the simple scaling properties described in
this letter, exactly the same relationship between ε and
the actual coefficient of restitution (which will now be
somewhat larger than ε) will be true for the HSD model.

Model choice. – Whether to terminate the collision
when the deformation turns zero (δ= 0) or the force
turns zero (δ̈= 0) depends on ones approach to modelling
the collision, as, of course, is the choice of a particular
model (see ref. [4] for some examples). If the priority is
to replicate the pre-defined coefficient of restitution, like
in a collision operator, a phenomenological model such
as the LSD or HSD can be used with a simpler δ= 0
condition. However, if one wants to model a particular
physical phenomenon like viscoelasticity, for example,
the δ̈= 0 condition should be used to avoid the non-
physical attraction. For a collision of viscoelastic spheres,
a model very similar to the HSD (with damping force
proportional to

√
δ rather than 4

√
δ) has been widely

used [12,13]. This model not only predicts lower coefficient
of restitution for higher impact velocities, as often seen
experimentally, but also covers other than viscoelastic
dissipation mechanisms [20]. The advantage of using the
HSD model is that it gives well-defined means of control
over the collision properties and can be readily generalized
to model more complex predefined ε(v) profiles.

Conclusions. – To summarise, we have deduced a
straightforward procedure for mapping the Hertzian oscil-
lator with a viscous force proportional to the 1/4 power
of the deformation onto a linear spring-dashpot model for
which analytical solution is known. We demonstrated that,
with appropriate rescaling of the coordinate axis, both
models follow the same phase trajectory. This allowed us
to express the coefficient in front of the dissipative force
via the experimentally observed coefficient of restitution
ε (see eq. (17)). The maximum deformation, indicative
of particle’s Young’s modulus when measured experimen-
tally, was shown to asymptotically change as

√
ε for the

LSD model (see eq. (21)) and as ε2/5 for the HSD model.
Using the scaling properties of the HSD phase trajectory

we demonstrated that the collision time is proportional

to 1/v
1/5
0 for any value of the restitution coefficient

ε. The energy dissipation produced a more significant
increase of the collision time within the HSD model
(proportional to −0.1 ln ε for ε≈ 1) when compared to
the LSD model (according to eq. (25) τ is constant
at first-order approximation). However, for the typical
experimental values of the restitution coefficient 0.5< ε<
1.0, the collision time increase is only within 3% for the
LSD model and 10% for the HSD model.
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Finally, we have commented on the use of the alternative
criterion to describe the end of the collision based on
preventing the total force becoming attractive as described
in detail in ref. [18]. Whichever criterion is chosen, it
is straightforward to match the experimentally observed
restitution coefficient to that obtained from a numerical
integration. Since using the LSD or HSD model is already
an approximation to a granular collision, we find that
using a simpler collision criterion considered in this letter
is more practical especially for lightly damped collisions,
for which the difference between the two criteria becomes
decreasingly small.
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