TAXONOMIC UPDATE

Species-level and other interesting taxonomic changes proposed for Asian birds, 2012

T. P. INSKIPP, N. J. COLLAR, J. D. PILGRIM & S. P. MAHOOD

In these annual reviews, we keep to a minimum any account of changes that are proposed in the Oriental Bird Club journal Forktail. We also, as usual, stress that what is reported here does not necessarily reflect the opinion of either the authors or OBC. We do not document subspecific changes in this review. To save space when referring to previous taxonomy reviews listed below, we here use superscript numbers as follows:

New family
Scotoceridae
Fregin et al. (2012a) presented a phylogenetic hypothesis for the superfamily Sylvioidea, based on one mitochondrial and six nuclear markers for 79 species, representing all currently recognised families. One finding was that, although Scrub Warbler Scotocerca inquieta was closely related to the Cettiidae, it was morphologically, ecologically and genetically very divergent, so the new family Scotoceridae was erected to accommodate it.

New genus
Agraphospiza
Zuccon et al. (2012) made many recommendations at the generic level within the finches (Fringillidae), as outlined below, but also established a new monotypic genus, Agraphospiza, for Blanford’s Rosefinch Procarduelis rubescens (Plate 1). The new taxon ‘differs from the other rosefinches of the genera Carpodacus, Erythrina and Haemorhous (as here restricted) by the totally unstreaked plumage in both sexes, the much longer and thinner, more rounded and less conical bill, the short but very pointed wing and the short tail with very long coverts. It differs also from Procarduelis in morphological proportions,... the presence of a well-developed, loud, musical territorial song, and in laying blue eggs (vs. white eggs in Procarduelis)’.

New species
Ninox leventisi and N. rumseyi
In the course of revising the Philippine Hawk Owl Ninox philippensis (see below), Rasmussen et al. (2012) established two new species N. leventisi (Camiguin Sur) and N. rumseyi (Cebu).

Suggested and intimated splits in journals
Anhinga melanogaster and A. novaehollandiae
Morphological analysis of all Old World populations of darters by Schodde et al. (2012) built on earlier assessments to suggest that three species are involved, of which two occur in the OBC region. The proposed species differ in face and head pattern, upperwing pattern and gross ventral pattern. Anhinga melanogaster (monotypic) occurs from India eastwards to at least Sumbawa, and might possibly regularly occur as far east as Roti and Timor, where it would overlap with breeding A. novaehollandiae (of Australia and New Guinea).

Prioniturus mindorensis and P. waterstradti
Schweizer et al. (2012) used mitochondrial and nuclear DNA to infer phylogenetic relationships in the racquet-tails Prioniturus. Their data suggest that the different subspecies of Blue-crowned
Racquet-tail *P. discus* do not form a monophyletic entity. *P. d. mindorensis* (restricted to Mindoro) clustered instead with the geographically closer Blue-headed Racquet-tail *P. plateneae* and Montane (or Luzon) Racquet-tail *P. montanus*, and merits species status. The remaining two subspecies—*P. d. discus* (found on Mindanao, Basilan and some of the Sulu islands) and *P. d. whiteheadi* (found from Luzon south to Bohol)—formed a monophyletic, although not robustly supported, group. Noting the genetic distance between these latter two subspecies, and their ‘morphological distinctiveness’ from each other, the authors suggested that they might also be separated as species, but urged caution in such an approach until potentially intermediate populations from Samar and Leyte are analysed. Their genetic data also provide further support for the now widely adopted split of *P. montanus waterstradi*i of Mindanao from nominotypical Montane Racquet-tail of Luzon (e.g. Collar 2011).

Ninox spilocephala, N. mindorensis, N. reyi and *N. spilonota*

Rasmussen *et al.* (2012) used a combination of morphological and acoustic data to split the Philippine Hawk Owl *N. philippensis* complex into seven species: Luzon Hawk Owl *N. philippensis*, Mindanao Hawk Owl *N. spilocephala*, Mindoro Hawk Owl *N. mindorensis*, Sulu Hawk Owl *N. reyi*, Romblon Hawk Owl *N. spilonota*, Camiguin Hawk Owl *N. leventisi* and Cebu Hawk Owl *N. ramseyi*, the last two being new species for science (see above).

Apus cooki\(^7\)

Päckert *et al.* (2012b) investigated Leader’s (2011) separation of Fork-tailed Swift *A. pacificus* into four species and showed that Dark-rumped Swift *A. acuticauda* and *A. pacificus cooki* were genetically (as well as geographically) closer than the latter is to *A. p. pacificus*. The authors noted, however, that any further taxonomic rearrangement of this group ‘should seriously consider whether further Southeast Asian populations such as subspecies *kanoi* and the Himalayan and Tibetan forms *leuconyx* and *salimalii* (both ranked as a separate species by Leader, 2011) are in fact distinctive by molecular markers’.

Hypothymis puella

Through their genetic analysis of *Terpsiphone* and other Old World Monarchidae, Fabre *et al.* (2012) provided support for the separation of the Wallacean Monarch *H. azurea puella* (following Oberholser 1911, Coates *et al.* 2006), dating the split between the taxa to the mid-Pliocene.

Terpsiphone, including *T. unirufa*

Fabre *et al.* (2012) subjected the paradise-flycatcher *Terpsiphone* complex to a comprehensive genetic analysis, and suggested separation of a number of African subspecies as distinct species. They did not make any species-level recommendations for Asian Paradise-flycatcher *T. paradisi*, but noted that it can be split into three ‘biogeographical groups’ which merit taxonomic reassessment using plumage, vocal and behavioural data. These groups comprise a South Asian clade (including *T. p. paradisi*, *T. p. leucogaster* and *T. p. ceylonensis*) more closely related to African paradise-flycatchers than other Asian taxa, a north-east Asian clade containing the migratory *T. p. incei*, and a South-East Asian clade (including *T. p. affinis*, *T. p. australis*, *T. p. borneensis*, *T. p. floris*, *T. p. insularis*, *T. p. nicobarica*, *T. p. procera* and *T. p.umbaensis*). Within the latter clade, data suggest that *T. p. floris* and *T. p.umbaensis* diverged from the other taxa between 1.1 and 1.7 million years ago. The authors also note the relatively large genetic distance between *T. cinnamomea unirufa* and the other two subspecies of Rufous Paradise-flycatcher *T. cinnamomea*, which suggests that it diverged between 1.3 and 2.1 million years ago. In combination with unpublished vocal and morphological data (D. N. S. Allen in litt. to NJC 2007), these data suggest that a split may be warranted.

Clytolaema septentrionalis, C. cyanopogon, C. jerdoni, C. kinabaluensis, C. moluccensis, C. insularis, C. media and C. melliana

Moltesen *et al.* (2012) examined genetic (one mitochondrial and two nuclear genes) and morphological data for leafbirds, and suggested that a number of subspecies should be elevated to species status. In the most straightforward case, they recommended separating the two subspecies of Lesser Green Leafbird as distinct species: *C. cyanopogon septentrionalis* of southern Myanmar, south-west Thailand and the north Malay Peninsula differs from *C. c. cyanopogon* of Borneo, Sumatra and the south Malay Peninsula on the basis of 7.43% mtDNA distance, smaller size and a clear yellow border to the black mask in males.

Significant revision was suggested for Blue-winged Leafbird *C. cochinichinensis*. Genetic support was found for the separation of Jerdon’s Leafbird *C. jerdoni* I of India and Sri Lanka (Plate 2) and Bornean Leafbird *C. kinabaluensis* I4 (Plate 3), as has been suggested by previous authors (e.g. Wells *et al.* 2003). Separation of the nominate subspecies from Java was also suggested, on the basis of 5.56% mtDNA distance from other subspecies, and the ‘distinct turquoise-green chin
and throat’ of females. The specific name for the remaining subspecies of *C. cochinchinensis* would then be *C. moluccensis*.

In three other cases, the authors suggested separation of individual subspecies as distinct species. They recommended specific status for *Golden-fronted Leafbird* *C. aurifrons insularis* from south-west India and Sri Lanka (Plate 4), based on 4.23% mtDNA distance from other *C. aurifrons* subspecies, supported by smaller size and (except in *C. a. frontalis*) plumage characteristics (presence of violet-blue in the mask and lack of yellow bordering the bib). Specific status was also recommended for *C. a. media* of Sumatra (following Wells *et al.* 2003), which the authors found actually to be closer genetically to Greater Green Leafbird *C. sonnerati*. Orange-bellied Leafbird *C. hardwickii meliana* from southern China and northern and central Vietnam was found to be 4.01% distant in mtDNA from other *C. hardwickii* subspecies, despite partial sympathy with the nominate subspecies. *C. h. meliana* also shows subtle but distinct plumage differences, e.g. males have ‘dark blue breast and dark blue shoulders’. Moltesen *et al.* (2012) noted that they lacked genetic data for Hainan’s *lazulina*, but this only differs from *meliana* by its longer bill and so probably belongs with this proposed species.

Irena ellae, *I. hoogstraali*, *I. andamanica* and *I. tweeddalei* Moltesen *et al.* (2012) also investigated species limits within Philippine Fairy Bluebird *I. cyanogastra* and Asian Fairy Bluebird *I. puella*. They separated the former into three species on the basis of 3.88–4.44% mtDNA divergence: *I. cyanogastra* is confined to the northern islands of Luzon, Polillo and Catanduanes, *I. ellae* to Samar, Leyte and Bohol, and *I. hoogstraali* to Mindanao and Dinagat (*melanochlamys* from Basilan was not sampled, but presumably belongs with *hoogstraali*). Further, *ellae* differs from *cyanogastra* by its ‘upper neck, mantle and scapulars black’ rather than deep indigo, while *hoogstraali* differs from *cyanogastra* and *ellae* by being ‘smaller, black below only down to breast’.

Asian Fairy Bluebird was also separated into three species based on genetic and plumage differences. *I. p. andamanica* of the Andaman Islands has a ‘heavy bill, broader and marginally
deeper than in any other subspecies’ (Plate 5), and was found to be 3.11% divergent in mtDNA. *I. p. tweeddalei* of Palawan, the Calamians and Balabac (Plate 6) was found to have 4.33% mtDNA divergence from other subspecies, with males having ‘blue areas cold azure to turquoise-blue (rather than violet-tinted royal blue)’. The remaining species, *I. puella* (Plate 7), was stated to comprise the subspecies *crinigera, puella, malayensis* and *turcosa*. Moltesen et al. (2012) did not mention *I. p. sikkimensis*, but it would be expected to be grouped with these latter subspecies based on its geographic range.

Cyanoptila cumatilis

Morphological and vocal data were used by Leader & Carey (2012) to elucidate the true taxonomic rank of *C. cumatilis*, which they named Zappey’s Flycatcher, and to demonstrate its distinctiveness from Blue-and-white Flycatcher *C. cyanomelana*.

Orthotomus chloronotus and *O. frontalis*

Sheldon et al. (2012) reconstructed the phylogeny of ‘all lowland tailorbird’ *Orthotomus* species (although see Mahood et al. 2013) and in doing so provided the molecular evidence sought by Collar...
(2011) to support species status for several Philippine taxa. The authors revealed a sister relationship between ‘Green-backed Tailorbird’ *Orthotomus castaneiceps chloronotus* (Plate 8) of Luzon and Grey-backed Tailorbird *O. derbianus* (Plate 9), indicating that the former should be recognised as a separate species from Philippine Tailorbird *O. c. castaneiceps* (Plate 10). They further identified only a distant relationship between Rufous-fronted Tailorbird *O. (c.) frontalis* (Plate 11) and *O. castaneiceps*, such that their treatment as conspecific is untenable.

Pnoepyga mutica

In a molecular and acoustic analysis of *Pnoepyga* ‘wren babblers’ (cupwings), Päckert et al. (2012a) found much divergence within Scaly-breasted ‘Wren Babbler’ *P. albiventer*, and proposed that the Chinese taxon *mutica* should be treated as a species, although it is not clear if, or where, the two taxa come into contact. They refrained, however, from suggesting any taxonomic action for the genetically no less divergent Myanmar population within the *P. albiventer* complex, owing to a lack of acoustic data.

Alcippe grotei

Heterophasia desgodinsi

Megapomatorhinus (Pomatorhinus) swinhoei

Cyanoderma (Stachyris) ambiguum

Moyle et al. (2012) applied a large nuclear and mitochondrial DNA dataset to babbler taxonomy.
The size of the babbler complex is so large that their study was understandably incomplete; consequently the full implications (particularly for lumps) are unclear. Four splits were, however, suggested/supportin relation to Insikkp et al. (1996): Black-browed Fulvetta A. grotei, Black-headed Sibia H. desgodinsi, Grey-sided Scimitar Babbler M. swinhoei and Buff-chested Babbler C. ambiguus (the first three being treated as such in Collar 2006).

Garrulax monachus
Wu et al. (2012) used mitochondrial DNA and supporting plumage differences to suggest the split of the Hainan endemic Garrulax chinensis monachus from other taxa making up the Black-throated Laughingthrush. They date its divergence to the middle Pleistocene.

Corvus levaillantii
Haring et al. (2012) presented the most comprehensive genetic analysis of corvids to date, using mitochondrial DNA. They considered their data 'might support the proposed species status of [Eastern Jungle Crow] C. levaillantii'.

Corvus pastinator and C. philippinus
Jønsson et al. (2012) presented the first molecular phylogeny of all species and a number of subspecies of Corvus using two nuclear and two mitochondrial genes. Their data support the notion that the Rook C. frugilegus may also consist of two distinct species, both of which (nominotypical frugilegus in the west, form pastinator in the east) occur within the region. In the same analysis the subspecies philippinus of Large-billed Crow C. macrorhynchos proved to be highly distinctive, but denser taxon sampling is needed before any conclusions can be drawn.

Suggested splits in books
Cuckoos of the world
Erritzøe et al. (2012) stated that 'For the most part we have accepted the genera and species limits of Payne (2005), with some adjustments that we have deemed necessary'. Thus they split Whistling Hawk Cuckoo Hierococcyx nisicolor1,3, Rufous Hawk Cuckoo H. hyperythrus1 and Philippine Hawk Cuckoo H. pectoralis1 from Hodgson’s Hawk Cuckoo H. fuscus; Dark Hawk Cuckoo H. bocki3 from Large Hawk Cuckoo H. sparverioides; Sunda Cuckoo Cuculus lepidus3 from Oriental Cuckoo C. saturatus (but not Oriental [Horsfield’s] Cuckoo C. optatus, which is split from Himalayan Cuckoo C. saturatus by Payne [2005])3. They also split Fork-tailed Drongo Cuckoo Surniculus dicruroides3 and Moluccan Drongo Cuckoo S. musschenbroekii3 from (Square-tailed) Drongo Cuckoo S. lugubris; however, for South Asia they followed Rasmussen & Anderton (2005), apparently unaware that their distribution information is incompatible with that of Payne (2005), even though it is based to some extent on an examination of the same specimens.

Owls of the world: a photographic guide
Mikkola (2012) did not discuss the basis for his adopted taxonomy, other than stating that ‘In the present book all possible new species have been presented’ and no references are provided. One might therefore assume that he followed all the splits in König et al. (2008) and more besides. However, there is no mention of Stresemann’s Scops Owl Otus stresemanni4 or Siau Scops Owl O. siaensis1,4. Kalidupa Scops Owl O. kalidupae4 is retained in Sulawesi Scops Owl O. manadensis with the comment ‘Further studies are needed to clarify the taxonomy…’—a requirement that could, however, equally be made of many of the splits he accepts. Northern Boobook Ninox japonica3 and Chocolate Boobook N. randi1 are retained in Brown Hawk Owl N. scutulata on the grounds that ‘...molecular-genetic data are required’—again something that is lacking for most of his accepted splits. He also recognised three splits additional to those in König et al. (2008): Grey-bellied Little Owl Athene poikilis (sic—should be A. poikila), overlooking that this taxon is referable to Boreal Owl Aegolius funerarius (Holt et al. 1999); Northern Little Owl Athene plumipes3, split from Little Owl A. noctua based on a molecular study and very minor morphological features; and Hume’s Hawk Owl Ninox obscura3, split from Brown Hawk Owl N. scutulata mainly on the basis of its uniform dark brown plumage.

Birds of South Asia: the Ripley guide, second edition
The large number of taxonomic changes in the first edition (Rasmussen & Anderton 2005) were reviewed in Collar & Pilgrim (2007). The new edition (Rasmussen & Anderton 2012) accorded species rank to the following regional taxa (some of which are extralimital to the region covered by the book):

Tropical Shearwater Puffinus bailloni2, Plumed Egret Egretta plumifera, White-winged Scoter Melanitta deglandi3, Eastern Osprey Pandion cristatus4, Legge’s Hawk Eagle Nisaetus kelaartii4, Barbary Falcon Falco pelegrinoides1, Australian Painted-snipe Rostratula australis, Hudsonian Whimbrel Numenius hudsonicus, Horsfield’s Cuckoo Cuculus optatus3, Sunda Cuckoo C. lepidus4, Eastern Barn Owl Tyto delicatula, Walden’s Scops Owl Otus modestus, Blyth’s Swift Apus leuconyx7, Salim Ali’s Swift A. salinali7, Cook’s Swift A. cookei7, Greater Flameback Chrysocolaptes guttacristatus2, Malabar Flameback C. socialis,

Birds of Central Asia

Ayé et al. (2012) treated an area extralimital to that covered by the OBC, but split one species that occurs marginally in the region and has not previously been mentioned in these summaries. Afghan Scrub Sparrow *Passer yassi* was discussed by Kirwan (2004), who considered that it could potentially warrant full species status. They also proposed a novel arrangement of the Great Grey Shrike *Lanius excubitor* complex, splitting it into three species in their region: Asian Grey Shrike *L. lahtora* (including *pallidirostris* and *aucherti*), Great Grey Shrike *L. excubitor* (including *homeyeri*), and Northern Grey Shrike *L. borealis* (including *mollis* and *sibiricus*). They cited the results of Olsson et al. (2009) for this treatment, although those authors hesitated to recommend any specific splits⁵.

Cautionary notes

Pitfalls in comparisons of genetic distances

Fregin et al. (2012b) examined the influence of different methods on calculating genetic distances using mitochondrial cytochrome *b* sequences for the family Acrocephalidae. They noted that genetic distances are increasingly being used for identification and species delimitation (for corroboration of this see under *Chloropsis* and *Irena* above), especially since the introduction of ‘barcoding’. However, the authors were concerned that the best-fit evolutionary model was often being neglected in calculating genetic distances, and that distances obtained from other than best-fit models, different length of sequences, and different loci were often freely compared. They provided detailed recommendations for appropriate genetic studies. Their results did not lead to any species-level taxonomic conclusions but they did find unexpectedly high intraspecific genetic divergence in three regional species currently regarded as monotypic: Black-browed Reed Warbler *Acrocephalus bistrigiceps*, Blyth’s Reed Warbler *A. dumetorum* and Large-billed Reed Warbler *A. orinus*.

Deep sympatric mitochondrial divergence without reproductive isolation

Johnsen et al. (2010) found two different mtDNA haplogroups in Common Redstart *Phoenicurus phoenicurus*, showing a divergence of 5%, much higher than the value for some related taxa currently treated as species; however, both haplogroups were found to coexist and interbreed in Europe. Hogner et al. (2012) examined this situation in more detail and found no evidence for lineage-specific assortative mating and no difference in sperm morphology, indicating that they are not cryptic species or likely to reflect the early stages of speciation. A gene tree constructed for this and 10 other *Phoenicurus* species showed no introgression from any of the congenerics. Sequences from two nuclear introns did not show a similar differentiation into two distinct groups. Mismatch distributions indicated that the lineages have undergone similar demographic changes. Taken together, these results confirm that deeply divergent mitochondrial lineages can coexist in biological species. MtDNA divergences are relatively rare in sympatric birds, but the fact that they occur argues against their use in species delineation. It is worth noting here that Zhang et al. (2012) found high genetic divergence between European and Asian populations of Eurasian Magpie *Pica pica* but—very wisely in light of this cautionary note—avoided taxonomic recommendations based on genetic divergence alone.

Suggested lumps

Anas crecca carolinensis

Speciation is a process in which genetic drift and selection cause divergence over time. However,
there is no rule dictating the time required for speciation, and even low levels of gene-flow hinder divergence, so that taxa may be poised at the threshold of speciation for long periods of time. Peters et al. (2012) sequenced mitochondrial DNA (mtDNA) and eight nuclear introns (nuDNA) to estimate genomic levels of differentiation and gene-flow between Eurasian Teal *Anas crecca crecca* and Green-winged Teal *A. c. carolinensis*. These ducks come into contact in Beringia (north-eastern Asia and north-western North America) and have probably done so, perhaps cyclically, since the Pliocene–Pleistocene transition about 2.6 million years ago, when they apparently began diverging. They have diagnosable differences in male plumage and are 6.9% divergent in mtDNA control region, with only 1 of 58 crecca and 2 of 86 carolinensis having haplotypes grouping with the other. Two nuclear loci were likewise strongly structured between these teal, but six loci were undifferentiated or only weakly structured. Gene-flow between crecca and carolinensis was ~1 individual per generation in both directions in mtDNA, but was asymmetrical in nuDNA, with ~1 and ~20 individuals per generation immigrating into crecca and carolinensis, respectively. This study argued that species delimitation using a single marker oversimplifies the complexity of the speciation process, and suggested that, even with divergent selection, moderate levels of gene-flow may stall the speciation process short of completion.

Lophura edwardsi = *L. hatinhensis*
Hennache et al. (2012) invoked morphological data from wild and captive birds and mitochondrial DNA to conclude that Vietnamese Pheasant *Lophura hatinhensis* is a junior synonym of Edwards’s Pheasant *L. edwardsi*.

Diomedea exulans antipodensis
Thalassarche chlororhynchos carteri
Thalassarche melanophris impavida
The above three albatross species have been recorded in the OBC region. The subspecies involved in the records are not clear, but the three mentioned here have been suggested by some authors. Penhallurick (2012) previously disputed the various splits proposed for albatross species (Penhallurick & Wink 2004)4, and has now critically examined them in more detail. He considered that the splits were based purely on the Phylogenetic Species Concept; that the conservation concerns raised to support the splits were not valid; and that the claim that introgression could explain the low cytochrome-b distance found between the splits and parent species was not supported. He suggested that an analysis of climatic conditions at albatross breeding colonies could explain plumage differences in the ontogeny of albatross taxa, and that plumage colouration could be related to differing environmental pressures. He concluded that variation among taxa within albatrosses is ecophenotypic.

*Centropus sinensis andamanensis*3
*Eudynamys scolopaceus melanorhynchus*4
*Eudynamys scolopaceus cyanopephalus*4
Erritzøe et al. (2012) followed Payne (2005) for the alignment of these forms of Greater Coucal and Asian Koel.

Larus fuscus heuglini
*Lanius excubitor meridionalis*5,7
*Periparus ater melanolophus*3,4
*Parus major bokharensis*3,4
*Cyanistes cyanus flaviceps*3,4
Rasmussen & Anderton (2012) reversed their trend for splitting species by lumping the above taxa (within Lesser Black-backed Gull, Great Grey Shrike, Coal Tit, Great Tit and Azure Tit, respectively).

*Paradoxornis webbianus–P. alphonsianus*6,7
In a paper which appears to be a postscript to Crottini et al. (2010), although nowhere once using the word *alphonsianus*, Qu et al. (2012) reported that during the Pleistocene glaciations, probably half-a-million to a million years ago, Vinous-throated Parrotbill *Paradoxornis webbianus* contracted into two separate refugia and subsequently accumulated genetic divergence. The current low genetic variation between *P. webbianus* and Ashy-throated Parrotbill *P. alphonsianus* thus probably reflects incomplete lineage sorting during their retreat into separate refugia and substantial admixture during recent postglacial expansion, suggesting that current morphological divergence between these two taxa will not be maintained on more than a clinal basis.

Corvus corone pectoralis
Haring et al. (2012) found Collared Crow *C. pectoralis* samples to be nested within eastern Carrion Crow *C. corone orientalis*, supporting some earlier recommendations to lump the two species.

Reconfigurations
Calidris and Tringa expand in size
Gibson & Baker (2012) examined one nuclear and four mitochondrial genes of 84 species in the suborder Scolopaci. Of relevance to our region, their data showed that the genera *Eurynorhynchus*, *Tryngites*, *Limicola*, *Philomachus* and *Aphriza* are
nested within Calidris, with Heteroscelus and Actitis within Tringa; they recommend taxonomic revision accordingly.

Leonirdina is a muscicapid
Oliveros *et al.* (2012) used genetic data to reassign the Mindanao endemic Bagobo Babbler *Leonirdina woodi* to the flycatchers Muscicapidae. Indeed, it ‘is embedded within a subclade of Saxicolinae most closely related to other ground/understorey montane endemics from Borneo (Eyebrowed Jungle Flycatcher *Rhinomyias gularis*), Luzon (White-browed Jungle Flycatcher *Rhinomyias insignis*), and Sulawesi (Great) Shortwing *Heinicchia calligyna*. Generic rearrangements are deferred until denser sampling of *Rhinomyias* has been conducted. Nonetheless the authors suggested a change in the English name to ‘Bagobo Robin’.

Robsonius is a locustellid
The genus *Robsonius* is revealed to be an old lineage of Locustellidae and *Robsonius* thus joins *Rhabdornis* and *Hypocryptadius* among Philippine endemic genera that represent early offshoots of widespread Old World families (Oliveros *et al.* 2012). The same analysis suggests that the charismatic Sulawesi endemic Malia *Malia grata* might also finally find a home among the Locustellidae when denser taxon sampling has been completed. The English group name ‘ground warbler’ is suggested for members of *Robsonius*.

Micromacronus is a cisticolid
Oliveros *et al.* (2012) added a fourth Asian genus to the Cisticolidae, a family with its greatest diversity in Africa, by showing that the two species of *Micromacronus* belong there. The authors noted that the position of the genus within the family is unclear and denser taxon sampling will be required to elucidate it. They suggested that the English name ‘plumed warbler’ be adopted for these two species, although we note that few of the other Cisticolidae are referred to as ‘warblers’, a term with imprecise meaning that is applied to a wide range of distantly related taxa (much in the same way as ‘babbler’ has been used).

Various finches
In a wide-ranging review of the Fringillidae, Zuccon *et al.* (2012) proposed various higher-level changes (including the establishment of the genus Agraphospiza; see above) which can be summarised thus:

- Redefine the genus *Carpodacus* to include the species *pulcherrimus, panicus*, *rhodochlamys*, *rodochroa*, *rodopelipus*, *roseus*, *rubicilla*, *rubicilloides*, *synoicus*, *thara*, *trifasciatus* and *vinaceus*, plus (pending molecular analyses) *edwardsii, eos* and *grandis*, and in addition *Kozlowia roborowskii*, *Uragus sibiricus* and *Pinicola subhimachala* (which thus becomes *C. subhimachalus*).
- Transfer *C. erythrinus* to the genus *Erythrina*, *C. nipalensis* to the genus *Procarduelis*, and *Serinus estherae* to the genus *Chrysocorythus*.
- Break up the genus *Carduelis*, restricting membership to *C. carduelis* and *C. citrinella*, and resurrecting the genus *Chloris* for the species *ambigua*, *chloris*, *monguilloti*, *sinica* and *spinoide*, the genus *Spinus* for the American members of *Carduelis* along with *C. spinus* and *Serinus thibetanus*, the genus *Linaria* for *cannabina* and *flavirostris* (probably with the unsampled *johannis* and *yemenensis*), and the genus *Acanthis* for the redpolls *flammea* and *hornemanni*.

Ambiguities
Apus nipalensis
Päckert *et al.* (2012b) found little genetic support for the separation of House Swift *Apus affinis nipalensis* (of Nepal, north-east India and South-East Asia) from Little Swift *A. a. affinis* (from India, Nepal, Pakistan and Sri Lanka in the OBC region), or of the widely accepted separation of Pallid Swift *A. pallidus* from Common Swift *A. apus*, but suggested that this may be due to recent speciation. They recommended continued separation of the last two species on the basis of morphological, ethological and ecological (e.g. vocal, nestling diet, foraging behaviour) factors. On the former two species they are equivocal, noting morphological distinctiveness but genetic similarity.

![Plate 12. Dark-breasted Rosefinch *Carpodacus nipalensis*. Sichuan, China, May 2008; one of the finches reviewed by Zuccon et al. (2012).](image-url)
Name change

Muscicapa latirostris

Mlíkovský (2012) explained that the name *Muscicapa daurica* ascribed to Pallas (1811) was not valid because it was given in the account of *Muscicapa grisola* as ‘*f. Varietas Daurica*’ (Pallas’s italics), and this has no nomenclature validity as a species name. Dement’ev (1935) subsequently described the bird as *Alseonax daurica* (with one u) but, long before that, Raffles (1822) described the same bird as *Muscicapa latirostris*. This name was the one most commonly used for the species until Watson et al. (1986) applied the name *Muscicapa daurica*, a decision that was accepted without re-examination in other lists (e.g. AOU 1998, Dickinson 2003, Dudley et al. 2006, Koblik et al. 2006). Mlíkovský recommended that the Asian Brown Flycatcher be called *Muscicapa latirostris* because it is the earliest available name for the species, and that *Muscicapa daurica* Dement’ev, 1935 be treated as a junior subjective synonym.

References

