TAXONOMIC UPDATE

Species-level and other changes suggested for Asian birds, 2009

T. P. INSKIPP, N. J. COLLAR & J. D. PILGRIM

The most recent two reviews in this series (Collar & Pilgrim 2007, Pilgrim et al. 2009) dealt simply with proposed changes at the species level, since higher-level taxonomic revisions often combine various characteristics, such as incompleteness, tentativeness, complexity and sheer number, to the point where accounting for them in popular form represents too much of an obstacle course and too little of a pleasure. However, where the facts seem firm and the story of import we are happy to point out some of these revisions; hence in this review we mention the recent establishment of two new families of bird with Asian representatives.

As before in these reviews, we should stress that inclusion here does not imply our agreement with or OBC’s approval of the changes in question.

New family

Pnoepygidae

Gelang et al. (2009) made a considerable number of suggestions for taxonomic revisions at the subfamily level in the babblers, all of which will presumably require further validation, but they established a new family, the Pnoepygidae, as molecular analysis consistently placed members of Pnoepyga well outside the Timaliidae: ‘Separated from other families within Sylvioidea by the combination of short, rounded and “cup-shaped” wings; very short or virtually absent tail; strong and long legs, with booted tarsus; cryptically patterned plumage with more or less irregular colour pattern of ventral feathers; and two colour morphs.’

No English name exists for this new family, whose members are shown in Plates 1–3 and which can hardly continue to be known as ‘wren babblers’. Pnoepyga means ‘puffrump’ (Jobling 2010), which has an easy sound to it; unfortunately, however, the birds in question do not possess puffed rumps. Other features of the genus are the ‘cup-shaped’ wings, long legs and big feet, and the reduction of

Plate 1. Pygmy ‘Wren Babbler’ Pnoepyga pusilla, Bukit Larut (Maxwell Hill), Perak, Malaysia, 12 July 2008.

Plate 2. Taiwan ‘Wren Babbler’ Pnoepyga formosana, Wushe, Taiwan, 16 April 2005.
the tail to almost nothing, but what options spring from these? ‘Cupwing’? ‘Bigfoot’? ‘Lacktail’? Perhaps we should hold a ‘Name this family’ competition.

Recent family, new member
Stenostiridae
This family was recently proposed for the ‘fairy-flycatchers’ of Africa (genera *Stenostira* and *Elminia*) but also includes Asia’s two *Culicicapa* canary-flycatchers (Beresford et al. 2005). Now it has been formally named, and the Yellow-bellied Fantail *Rhipidura hypoxantha* (Plate 4) has been added to the family: its small size and part-yellow plumage always made it an unusual fantail, and its transfer to the Stenostiridae requires the resurrection of the genus *Chelidorhynx* to accommodate it there (Fuchs et al. 2009). The name might now become ‘Yellow-bellied Fairy-flycatcher’.

New species
Pycnonotus hualon
The Bare-faced Bulbul was a notable addition to the global avifauna in 2009, but one well-known to OBC members through its description in *Forktail* 25 (Woxvold et al. 2009) and its further contemplation in *BirdingASIA* (Pilgrim et al. 2009).

Phylloscopus calciatilis
Discovered as long ago as July 1994, the Limestone Leaf Warbler *P. calciatilis* of central Laos, northern and central Vietnam and probably Guangxi province of southern China was initially thought to be an outlying population of Sulphur-breasted Warbler *P. ricketti* of China and/or Yellow-vented Warbler *P. cantator*, whose nearest population is in northern Laos, but it has a lower-pitched song and call than either of these, and is genetically distinguishable (Alström et al. 2009). The case for species status for *calciatilis* is made with caution, given the near-impossibility of telling it apart from *ricketti* on morphological grounds. In this regard it is at the opposite end of the spectrum from the Bare-faced Bulbul *Pycnonotus hualon*, also described last year from limestone country in Indochina.

The description of *P. calciatilis* appeared in the first issue of Ibis for 2010, but went online a few days before the end of 2009, and hence is dated that year (P. Alström in litt.).

Suggested or tentative splits in journals
Charadrius (*alexandrinus*) *alexandrinus*
Genetic analyses conducted by Küpper et al. (2009) revealed that American Snowy Plover *C. a. nivosus* and Eurasian Kentish Plover *C. a. alexandrinus* populations have strongly diverged, with Kentish Plover being more closely related to White-fronted Plover *C. marginatus* than to Snowy Plover. Snowy Plover also differs morphologically, having significantly shorter tarsi and wings.

Thalasseus (*sandvicensis*) *sandvicensis*
Efe et al. (2009) reached the conclusion that the two previously recognised New World subspecies of Sandwich Tern are specifically distinct from Old World *sandvicensis*, and indeed are closer to Elegant Tern *T. elegans*. Further, they note that South American *eurygnathus* is not genetically distinct from North American *acuflavidus* and does not merit even subspecific recognition.
BirdingASIA 14 (2010) 61

Athene (noctua) plumipes

Wink *et al.* (2009) studied the molecular phylogeny of various owls. They found that within Little Owl *A. noctua* several distinct lineages were visible (similar to the situation in the American *Glaucidium* complex), indicating a high degree of geographic differentiation. Of relevance to the OBC region, they found that *A. n. plumipes* (Plate 5) from Mongolia and China shows a distinct genetic lineage, and suggested this deserves species status.

Lanius excubitor complex

Olsson *et al.* (2009) estimated the phylogeny of 18 taxa in the Great Grey Shrike *Lanius excubitor* complex, and the related species Chinese Grey Shrike *L. sphenocercus*, Loggerhead Shrike *L. ludovicianus* and Somali Fiscal *L. somalicus*. According to their mitochondrial gene tree, *L. excubitor* in the broadest sense is non-monophyletic, with some of its subspecies being more closely related to *L. sphenocercus*, *L. ludovicianus* and *L. somalicus*. Also the division of the *L. excubitor* complex into a northern (*L. excubitor*) and a southern (*L. meridionalis*) species, as has been proposed based on morphological and ecological similarity and geographical distributions, is not compatible with the mitochondrial tree. Overall, genetic divergences are small, indicating a recent radiation. Olsson *et al.* (2009) concluded that the *Lanius excubitor* complex may be treated as at least six species, three within the Oriental region, *L. borealis*, *L. excubitor* and *L. lahtora*, and three extralimital, *L. elegans*, *L. meridionalis* and *L. uncinatus*; however, they admitted that other taxonomic treatments were possible and that further investigations were required. They also suggested that *Lanius sphenocercus giganteus* probably merits species rank.

Pycnonotus cinereifrons, Alophoixus frater, Ixos guimarasensis and I. mindorensis

Oliveros & Moyle (2009) examined the origin and diversification of Philippine bulbuls using a phylogenetic framework. Their results suggested that the following four forms warranted recognition as separate species: Ashy-fronted Bulbul *Pycnonotus cinereifrons* (Plate 6) split from Olive-winged Bulbul *P. plumosus*, Palawan Bulbul *Alophoixus frater* (Plate 7) split from Grey-cheeked Bulbul *A. bres*, *P. cinereifrons*, *A. frater*, *I. guimarasensis* and *I. mindorensis*.

Plate 5. Little Owl *Athene noctua plumipes* from Mongolia and China may warrant species status as ‘Northern Little Owl’ *Athene plumipes*. Beidaihe, China, October 2004.

and Visayan Bulbul *Ixos guimarasensis* and Mindoro Bulbul *I. mindorensis* both split from Philippine Bulbul *I. philippinus*. They believed that the last two species would be placed more correctly in Hypsipetes.

Copsychus (saurais) mindanensis

Sheldon et al. (2009) found that Philippine birds (Plate 8) considered part of Oriental Magpie Robin *Copsychus saularis* are distinct on account of their black tails, and of their high level (6%) of genetic divergence (*C. saularis* on Borneo are closer to *C. albospecularis* in Madagascar than they are to *C. saularis* in the Philippines!). The race *deuteronymus* is relegated to synonymy of the nominotypical and the species is thus monotypic.

Cyornis (banyumas) magnirostris

The split by Rasmussen & Anderton (2005) of Large Blue Flycatcher *C. magnirostris* from Hill Blue Flycatcher *C. banyumas* was not followed by Clement & Taylor (2006), but the latter hinted at the need for more study. Further support for the split was provided by the discovery by Renner et al. (2009) of *C. magnirostris* populations overlapping those of *C. banyumas whitei* in north-east India and northern Myanmar (if the assumption that *whitei* is non-migratory is correct). *Cyornis magnirostris* so far has a distribution in north-east India and adjacent Myanmar, and is best distinguished from *C. b. whitei* by its distinctly larger size, its larger, more hook-tipped bill, and longer wings.

Suggested splits in books

HBW 14

Rocamora & Yeatman-Berthelot (2009) provisionally split Tablas Drongo *Dicrurus menagei* (Plate 9), as suggested by Allen (2006), based on its morphological distinctiveness and apparent differences in voice, behaviour and habitat preferences from other forms of Hair-crested Drongo *D. hottentottus*; however, they concluded that this move ‘will require further corroboration’. They also split the following, dealt with in previous summaries: Sri Lanka Crested Drongo *D. lophorinus* (Collar & Pilgrim 2007), and Spangled *D. bracteatus*, Wallacean *D. densus* and Sumatran *D. sumatranus* Drongos (Pilgrim et al. 2009).

Anjos et al. (2009) maintained the recent split of Kashmir Nutcracker *Nucifraga multipunctata* (Collar & Pilgrim 2007) and Hooded Crow *Corvus cornix* (Collar 2003).

Craig & Feare (2009) maintained the recent split of Great Myna *Acridotheres grandis* and White-vented Myna *A. javanicus* (Collar 2003, Pilgrim et al. 2009); also, Enggano Hill Myna *Gracula*
engganensis, Southern Hill Myna G. indica and Nias Hill Myna G. robusta Hill (Collar 2003).

Brazil: East Asia
This major new field guide covers about 985 species from easternmost Russia south to eastern China and Taiwan. The author adopted 63 splits, most of which follow other authors and have been dealt with previously in these summaries. The only exceptions are Oriental Honey-buzzard Pernis orientalis, split from P. ptilorhynchos, perhaps based on Ferguson-Lees & Christie (2001), who noted that ‘[t]here is a considerable case for treating the migratory orientalis as specifically distinct from the sedentary forms...’ (but contrary to Gamauf & Haring 2004); Black-eared Kite Milvus lineatus, which was split by Sibley & Monroe (1990) based on a pers. comm., a treatment followed by many authors, including Robson (2008), a fact overlooked by Pilgrim et al. (2009); Ryukyu Green Pigeon Treron riukiensis, split from T. formosae, although ‘riukiensis’ appears to be an unknown scientific name and this split should be referred to as T. permagnus (Collar 2004); Taiwan Shortwing Brachypteryx goodfellowi, split from B. montana, presumably based on speculations in Collar (2004, 2005); and Ryukyu Flycatcher Ficedula owstoni, split from F. narcissina, presumably following the suggestion made by Otani (2002). No taxonomic discussion was provided for any of these splits.

Myers: Borneo
This field guide, dealing solely with Borneo, has come from the same stable as Robson (2008) and the taxonomy employed is essentially the same. It covers 633 species and has adopted 43 splits, 15 of which are extralimital to South-East Asia. Most of these have been mentioned in the previous summaries of taxonomic changes. The exceptions are Cinereous Bulbul Hemixos cinereus (split from Ashy Bulbul H. flavaulus), which was previously split by Fishpool & Tobias (2005) but overlooked in Collar & Pilgrim (2007); and Pale-faced Bulbul Pycnonotus leucops, which Fishpool & Tobias (2005) declined to split from Flavescent Bulbul P. flavescens, despite noting that it ‘differs vocally and morphologically (differences far exceed those between all other races), and is a prime candidate for elevation to species rank’. One split that also occurs in South-East Asia is White-faced Plover Charadrius dealbatus, which was discussed in detail by Kennerley et al. (2008) and illustrated by Bakewell & Kennerley (2008), but was not split by these authors owing to the stated need for further work.

Reconfigurations
Pteruthius shrike babblers
Reddy (2008) took the usually accepted five Pteruthius shrike babblers (e.g. Inskipp et al. 1996, Dickinson 2003, Collar & Robson 2007) and proposed 19 phylogenetic species (Pilgrim et al. 2009). Rheindt & Eaton (2009) subjected this review both to reanalysis using the biological species concept and to scrutiny in terms of sample sizes and interpretation. Their conclusions were to add four biological species to the current suite of five, by dividing White-browed Shrike Babbler P. flaviscapis into four and Chestnut-fronted Shrike Babbler P. aerolatus into two, with the following names and diagnoses.

- Pied Shrike Babbler P. flaviscapis (Java; monotypic) is endemic to Java and is unique in having all-black upperparts and a smaller size; it has a possibly impoverished vocal repertoire, and appears highly distinct genetically.
- Himalayan Shrike Babbler P. ripleyi (western Himalayas east at least to central Nepal; monotypic), despite being so indistinct in plumage morphology that it was not recognised as even a subspecies by Rasmussen & Anderton (2005) or Collar & Robson (2007), shows a high level of genetic separation from its nearest neighbour (taxon validirostris) and has a much slower, more melodious song (Rheindt & Eaton acknowledge that more sampling is needed to test this new arrangement).
- Dalat Shrike Babbler P. annamensis (Da Lat Plateau, southern Vietnam; monotypic) again shows a high degree of genetic distinctiveness from all taxa and vocal distinctiveness from its nearest neighbour aerolatus (and again Rheindt & Eaton acknowledge that more sampling is needed to test this new arrangement).
- Blyth’s Shrike Babbler P. aerolatus (Plate 10) (Sundaic region north to southern China and west to eastern Himalayas; polytypic, with races

Plate 10. ‘Blyth’s Shrike Babbler’ Pteruthius aerolatus is one of four new species resulting from the proposed splitting of the long-standing White-browed Shrike Babbler P. flaviscapis. Mae Wong National Park, Thailand, 16 September 2010.
The split of American Scoter *M. americana* (Plate 11) from Black Scoter *M. nigra* has been covered twice in these reviews (Collar 2003, Collar & Pilgrim 2007), but Sangster (2009) has produced some striking evidence of the differences between the two in courtship calls. Contrary to British usage the English name Black Scoter refers to the complex when lumped; if *americana* is split, *M. nigra* in the strictest sense would be named Eurasian Scoter.

Aquila (Hieraaetus) weiskei
The specific difference of New Guinean *weiskei* from Australia’s Little Eagle *A. (H.) morphnoides* was hinted at by Amadon & Bull (1988), argued for by Parry (2001), suggested by Bunce *et al.* (2005) and directly addressed by Gjershaug *et al.* (2009), who demonstrated that what they call Pygmy Eagle needs to be considered a resident on the islands of Halmahera, Ternate and Seram (as well as across New Guinea).

Gjershaug *et al.* (2009) stated that adult Pygmy Eagle has upperparts darker, contrasting less with the paler scapular patch, and darker underparts with broader streaks than in either Little Eagle or Booted Eagle *A. pennata* (Plate 12). While Booted Eagle has a distinctive black crown with a short crest that contrasts sharply with the paler nape, Pygmy Eagle has a dark brown crown, streaked with no crest. Pygmy Eagle is diagnosable from Little Eagle in several structural features (wing, tail, middle toe, middle claw and bill length), ten adult plumage differences and DNA sequences. The plumage differences between Pygmy Eagle and Little Eagle are greater than those between Little Eagle and Booted Eagle, which are widely recognised as distinct species.

In the Moluccas the possibility of misidentification of Pygmy Eagle with vagrant Booted Eagles exists. Most pale morph Pygmy Eagles have all underwing-coverts white, lacking the contrasting white band between the rufous lesser underwing-coverts and the dark secondaries found in all pale morph Little Eagles. Although Pygmy Eagle underwing pattern is broadly similar to that of pale morph Booted Eagle, it is easily distinguished under good conditions by the much paler inner parts of its outer primaries and very pale inner primaries. This produces a large pale patch on the hand that contrasts with the dark-barred outer primaries and secondaries of Booted Eagle. Booted Eagle has black unbarred tips of the outer flight feathers. Dark morph Pygmy Eagle is more similar to Booted Eagle in underwing pattern, but can be distinguished by the less contrasting upperwing pattern and lack of pale-coloured contrasting uppertail-coverts. Booted Eagles also have characteristic white shoulder-

Reinforcements

Polyplectron katsumatae
For further perspective on the view of Chang *et al.* (2008), Pilgrim *et al.* (2009) referred readers to Collar (2009), where the differences of the Hainan Peacock Pheasant *P. katsumatae* from Grey Peacock Pheasant *P. bicalcaratum* were listed as its (1) much smaller size, (2) green not purplish ocelli on wings and mantle, (3) absence of elongate crown feathers (in males), (4) darker crown than neck and mantle (same shade in Grey), (5) much denser vermiculations, giving it a darker overall body coloration. In 2010 the species was listed as Endangered (BirdLife International 2010).

Melanitta americana
The split of American Scoter *M. americana* (Plate 11) from Black Scoter *M. nigra* has been covered twice in these reviews (Collar 2003, Collar & Pilgrim 2007), but Sangster (2009) has produced some striking evidence of the differences between the two in courtship calls. Contrary to British usage the English name Black Scoter refers to the complex when lumped; if *americana* is split, *M. nigra* in the strictest sense would be named Eurasian Scoter.

Plate 11. American Scoter *Melanitta americana*, split from Black Scoter *M. nigra*, has distinctive courtship calls; it is found in the far east of the region. Gangwon Do, Korea, 8 March 2008.
patches visible both in flight and when perched, lacking in Pygmy Eagle.

Lanius phoenicuroides
Panov (2009) recommended that the Turkestan Shrike *L. phoenicuroides* be treated as a separate species from Isabelline Shrike *L. isabellinus*, on the basis of differences in colour pattern, wing formula, moult schedule, phenology of breeding, character of seasonal migration, and an apparent absence of regular gene flow between the two forms in the zone of allopatry/parapatry. This was originally split by Lefranc (1997), who also treated Daurian Shrike *L. speculigerus* as a separate species (Collar 2003). The latter is now generally regarded as a form of *phoenicuroides* as monotypic. Panov also provided reasons for not accepting the suggestion, made by Pearson (2000) and adopted by Dickinson (2003), that *L. i. speculigerus* should be renamed *L. i. isabellinus*, and that *L. isabellinus* should be renamed *L. i. arenarius*.

Remiz consobrinus
Bot & van Dijk (2009) reported on the preliminary results of a molecular study on penduline tits *Remiz*, which indicated that White-crowned *R. coronatus* and Chinese *R. consobrinus* deserve species status, as adopted in Inskipp *et al.* (1996) but contrary to Eck & Martens (2006; see Collar & Pilgrim 2007). This was supported by field observations that the two forms differ clearly in song, plumage and breeding systems.

Phylloscopus claudiae, P. goodsoni and P. ogilviegranti
Päckert *et al.* (2009) evaluated the degree of differentiation between the species in the *P. reguloides* and *P. davisoni* complexes by molecular and bioacoustic markers. The molecular phylogenetic results supported the previous splits of *reguloides* into three species and *P. davisoni* into two, as advocated by Olsson *et al.* (2005). However, they also found that differences in songs paralleled the genetic diversity, providing a ray of hope for those who have grappled with these taxa in the field. *Phylloscopus reguloides* in the strictest sense repeats syllables of 2–4 notes (ABABAB, ABCAB) following a short narrow-banded introductory note; *P. claudiae* has moderate to rapid trills of a single repeated element (AAAAAA), combined with one or two introductory notes; and *P. goodsoni* has a distinct trill-syllable combination with only 2–3 highly modulated elements at the beginning, followed by a long repetition of syllables (AAA BCDCDBC). Note that the *reguloides*-type song is not diagnostic: it is shared to some extent with the other two species. The *P. davisoni* group have more complex and less regular songs than the *reguloides* clade, and generally lack trilled songs. *Phylloscopus davisoni* in the strictest sense has a low-pitched and regularly structured song, whereas *P. ogilviegranti* has a high-pitched song with a complex pattern.

Cyornis lemprieri
The extensive analysis by Renner *et al.* (2009) while comparing Large Blue Flycatcher *C. magnirostris* (see above) with other *Cyornis* taxa led them to realise how distinctive is the Palawan Blue Flycatcher *C. lemprieri*, whose status as a species was recognised by Inskipp *et al.* (1996) but not by Dickinson (2003). Renner *et al.* (2009) asserted that ‘[i]t differs strikingly in bill shape, overall colour, and colour pattern, especially in the female, although most of these differences are not apparent in illustrations accompanying [Clement &] Taylor (2006)’, and they provided a detailed tabulation of characters comparing *lemprieri* to other taxa.

Riddle
Saxicola torquatus and *S. leucurus*
Overlapping molecular studies by Illera *et al.* (2008)—reported on by Pilgrim *et al.* (2009)—and
Zink et al. (2009) showed that genetic variability between Asian populations of the Stonechat *S. torquatus* is such that species limits still remain difficult to resolve. The notion of three species—African Stonechat *S. torquatus*, European Stonechat *S. rubicola* and Asian Stonechat *S. maurus*—does not emerge as a well-supported arrangement, as some evidence confounds it while several other candidates emerge for possible further splitting. Moreover, in part of their study missed by Pilgrim et al. (2009), Illera et al. (2008) found that White-tailed Stonechat *S. leucurus* (Plate 13) grouped in a clade with three specimens of *S. torquatus*, which could suggest that its status as a species, already open to doubt (Collar 2005), might be in jeopardy. However, the analysis included only one specimen of *leucurus* from Nepal, and the specimens of *torquatus* in the clade were one *indicus* from Nepal and two assumed *rubicola* from Spain! The only other Asian specimens of *torquatus* analysed were five *maurus* from Kazakhstan, which all grouped in a clade far removed from the one containing *leucurus*. Clearly, no conclusions can be drawn until a comprehensive molecular study of Asian specimens of the complex is carried out.

Acknowledgement

We thank Jan Ove Gjershaug for allowing us to reproduce his illustration of three *Aquila* in flight profile.

References

