TAXONOMIC UPDATE

Changes in species-level taxonomy of Asian birds in 2004, with other notes

N. J. COLLAR

New species

In 2003 I indicated, with breath-taking unoriginality, that it will be by concentrating on voice, islands and mountains that new species limits, and indeed new species, may be found in Asia (Collar 2003). I missed the chance to make another point, perhaps too obvious for the OBC readership: that the way the number of bird species in Asia is most likely to increase, apart from taxonomic revision, is through the discovery of nocturnal birds, lookalikes and skulkers. The point makes itself here, because in the past six years—since 1998—the Asian region as defined by OBC has seen the description of eight new species of night bird (Otus alius, O. collari, O. thilohoffmanni, Ninio, N. sumbensis, N. burhansi, Caprimulgus meesi, Scolopax bukidnonensis) and three new species of rail (Gallirallus calayanensis, Gymnoecrex talaudensis, Amaurornis magnirostris), nine of them from small islands and two from mountains on larger islands, and four of them in 2004. An interesting exercise might be to map out the rails and owls of each island larger than, say, 200 km², in the eastern archipelagos of the region in order to see what patterns emerge, and what gaps are disclosed.

The Calayan Rail Gallirallus calayanensis (Plate 1) should need no introduction to members of OBC, since it was described in the lead paper of Forktail 20 (Allen et al. 2004). The team that discovered the species last year on Calayan, north of Luzon, have just won a BP Conservation Award worth $12,500 to return and research its status and requirements, and they are also receiving support from the Haribon Foundation through its Threatened Species Program backed by the Critical Ecosystem Partnership Fund (CEPF).

The Serendib Scops Owl Otus thilohoffmanni (Plate 2) has been known about as a voice for just over a decade, having first been heard by Deepal Warakagoda in February 1995 in a rainforest area of south-west Sri Lanka, but it was seen for the first time only six years later, and it took almost another two years before a specimen was collected, in November 2002. Exhaustive comparisons by Warakagoda & Rasmussen (2004) indicate that it is closest in general appearance and voice to Reddish Scops Owl O. rufescens of the Sundaic region, but is clearly distinct in facial pattern (including lack of ear-tufts) and general pattern of the upperparts as well as voice and tarsal feathering, with smaller differences in colour below, bill, wing-length, pattern of open wing, foot structure, plumage structure and other features. As of early 2004 the species was known by 45 living individuals distributed among five sites in the wet zone of Sri Lanka, and the authors judged that it should meet the criteria for red-listing as Endangered.

What are presumed to be the calls of the Togian Hawk Owl Nyx burhansi (Plate 3) were also heard long before the species was seen—on Christmas Day 1999, with two specimens being collected only in April 2001 and March 2002, all on the main island of Togian in the Togian archipelago in Tomini Bay, Central Sulawesi (Indrawan & Somadikarta 2004). These calls certainly differ from any known call of other congeners in the region, and the bird itself differs from other local Nyx mainly in its dark-streaked breast and white lower underparts. The species appears to be a widespread, moderately common resident of the archipelago, but the islands are not large and forest clearance is increasing on them.

Using territorial calls as the key character set, Sangster & Rozendaal (2004) described Mees's Nightjar Caprimulgus meesi as the previously undiscriminated taxonomic representative of the Large-tailed Nightjar C. macrurus on Flores and Sumba, Indonesia. Unlike C. macrurus, which is well known for its deep chonk chonk chonk chonk... song (each chonk being termed a soDB, delivered in long bouts), meesi generally groups its songs into pairs, each song consisting of an explosive higher-pitched rise-and-fall note tailed with an inaudible tremolo (visible on sonagrams), piok piok or weelp weelp. Playback experiments produced immediate responses of meesi to meesi and of macrurus to macrurus, but never of meesi to macrurus or macrurus to meesi. Astonishingly, meesi is apparently indistinguishable in morphology from race C. m. schlegeli, which occurs from the remaining Lesser Sundas eastwards (Lombok, Sumbawa, the Moluccas and Timor east to New Britain and Queensland, Australia).

New subspecies

Kumar & Singh (2004) established the name arunachalensis for a new subspecies of Sclater's
Plate 1. Calayan Rail Gallirallus calayanensis, Calayan Island, Philippines, March 2005

Plate 2. Serendib Scops Owl Otus thilohoffmanni, Morapitiya, Sri Lanka, 23 February 2005

Plate 3. Togian Hawk Owl Ninox burhansi, Togian Islands, 13 April 2001. Fig. 2 from Indrawan & Somadikarta (2004)
Monal *Lophophorus sclateri* from the north-western part of Arunachal Pradesh, India (Plate 4). Virtually the only (but highly distinctive) character separating this form from the nominate is the absence in the male of the latter's chestnut band on the tail, which consequently is all white. Female *arunachalensis* are darker overall than female nominate *sclateri*, with olive-grey rather than greyish-white lower back, rump and tail (rump feathers with stronger white streaks on the midrib), the tail having reduced mottling and broader white tips. The eastern boundary of the new race is the "Subansiri Divide". Nominate *sclateri* occurs immediately across this divide, although the two taxa evidently come into contact in one area (Kumar & Singh found—and publish a photograph of—some tails which are intermediate). Whether there is allopatry, parapatry or a very narrow hybrid zone, this is a case where, even under the biological species concept invoked by the authors, this new taxon might *just* qualify as a full species, particularly if its vocalisations prove to be different in some degree, and particularly as the authors report that "in the genus *Lophophorus*, tail feathers play a major role during courtship display".

Splits

A molecular phylogeny of small *Puffinus* shearwaters (Austin *et al*. 2004) concluded that Audubon's Shearwater *P. lherminieri* should be treated as a North Atlantic endemic species, and that the taxa in the tropical Indian and Pacific Oceans (including *persicus*) constitute a separate species: Tropical Shearwater *P. bailloni*.

Genetic studies of geese, including recent work with mitochondrial DNA, have supported earlier suggestions that the Canada Goose *Branta canadensis* constitutes more than one species (Banks *et al*. 2004). Several small-bodied races have been separated as the Cackling Goose *B. hutchinsii* and it is this species that occurs in the Oriental region.

A phylogenetic investigation of Old World buzzards *Buteo* of the *buteo–vulpinus* complex and related taxa, using morphological and genetic markers, found that western taxa (including the Long-legged Buzzard) showed almost no sequence variability but that eastern Palearctic taxa were well differentiated genetically (Kruckenhauser *et al*. 2004). Although the Himalayan *B. repectus* was not clearly separated morphologically from *B. japonicus* its mitochondrial haplotypes were found to form a distinct cluster and these two taxa were
considered to be worthy of species status: Himalayan Buzzard B. reflectus and Eastern Buzzard B. japonicus.

In the detailed analysis which led to the naming of Caprimulgus meesi, Sangster & Rozendaal (2004) also separated out the existing race andamanicus of Large-tailed Nightjar C. macrurus, indicating that its song (a single chow) is shorter than that in macrurus and delivered faster but in more limited bouts of 4–7. They point out that the just-published Rasmussen & Anderton (2005) have independently split the “Andaman Nightjar” (and the latter authors carry more information on morphological differences).

Using cytochrome-b gene sequences and vocalisations, Martens et al. (2004) examined species limits in Pallas’s Leaf Warbler Phylloscopus proregulus and concluded that the species breaks down into four, Pallas’s Leaf Warbler P. proregulus extensively across Siberia, Gansu Leaf Warbler P. kansuensis in Gansu and Qinghai, China, Sichuan Leaf Warbler “P. forresti” (name provisional; = P. sichuanensis or P. yunnanensis) in western and south-west China, and Simla Leaf Warbler P. chloronotus in the Himalayas. Morphological differences between these four taxa are extremely slight—proregulus has greener and yellower-white head markings with whiter underparts, but the other three are virtually indistinguishable—and even the calls are hard to tell apart, proregulus producing a melodious, rising, relatively protracted tweed, kansuensis a short sitid, forresti a short sharp twit and chloronotus a sharp tick. This is clearly a subject for intensive new field study.

BirdingASIA 2 carried an article by Collar (2004b) which outlined possible splits of up to 10 Taiwanese taxa, but this study was preliminary and qualitative.

Lumps
A molecular study of the Procellariiformes concluded that the prions Pachyptila should be reduced to two species, Fairy Prion P. turtur and Broad-billed Prion P. vittata (Penhallurick & Wink 2004). The Antarctic Prion P. desolata—the taxon recorded for the region based on a single lost specimen from Java—is subsumed in the latter species.

The Asian Short-toed Lark Calandrella cheleensis was lumped with the Lesser Short-toed Lark C. rufescens by de Juana & Suárez (2004) on the grounds that further study was needed of the apparent overlap of races from the two groups and which taxa might belong to which species, if separated.

Collar (2004a) lumped Amami Thrush Zoothera major as well as Horsfield’s Thrush Z. horsfieldi and White’s Thrush Z. aurea—the two latter not being recognised in the OBC Checklist (Inskipp et al. 1996) but widely split elsewhere—with Scaly Thrush Z. dauma, and White-crowned Shama Copsychus striicklandii with White-rumped Shama C. malabaricus.

Invalid species
In 1997 Rasmussen (1998) began a careful analysis of plumages in order to investigate—and quickly tending to confirm—Kermit B. Woods’s original insight that Imperial Pheasant Lophura impeius was a hybrid, involving as he thought Edwards’s Pheasant L. edwardsi and Siamese Fireback L. diardi, although in the event the second parent proved instead to be Silver Pheasant L. nycthemera. The notion of a hybrid origin was initially discounted by Hennache (1999) who, in reporting on DNA research on Imperial, Edwards’s and Vietnamese Pheasant L. hatinhensis, judged that these three instead “represent recent episodes of speciation”. Nevertheless, presented with Rasmussen’s evidence he immediately undertook a cross-breeding experiment involving Edwards’s and Silver Pheasants, and produced exact fits for the original description (see Plate 5); further DNA research confirmed the findings. These detailed studies were published in Hennache et al. (2003), a paper which appeared late enough in 2003 to become news only in 2004.

Re-namings
The Tanimbar Corella or Goffin’s Cockatoo, in recent literature referred to as Casuata goffinii, was in 2000 re-christened Casuata tanimbereus but is now named Casuata goffiniana (Roselaar & Michels 2004). The name goffinii proved to have been applied to the Solomon Corella C. ducorsii, while the name tanimbereus was erroneously provided as a “substitute name” (“nom. nov.”) for the Tanimbar species when in fact it had never had a name applied to it at all, so under ICZN rules tanimbereus is a synonym of ducorsii (!)—hence, at last, goffiniana.
Higher-level systematics
Study of preen gland secretions confirm that Hume's Groundpecker *Pseudopodoces humilis* is indeed a titmouse, although the authors of this new study mention that its "behavioural and vocal characteristics... are clearly more similar to corvids than to parids" (Gebauer et al. 2004).

Disclaimers
These are the changes that came to my attention for the year 2004, but I make no claim to comprehensiveness; higher-level systematic insights are likely to be very poorly represented. Moreover, this is just a review and nothing documented here automatically means acceptance by the Oriental Bird Club or endorsement by myself: while most of the changes will doubtless be accepted, the lumps and splits may well be challenged, and opinion on some of them is likely to remain divided and uncertain for some time.

Acknowledgements
Pamela Rasmussen, Richard Thomas and above all Tim Inskipp very kindly helped with this review, and I thank them warmly. I equally thank all those who generously allowed images to be used: James Eaton/www.birdtourasia.com, Alain Hennache, Gehan de Silva Wijeyeratne/www.jetwingeco.com, Suresh Kumar, Mohammed Indrawan and John C. Schmitt.

References

* N. J. Collar, Conservation Biology Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, and BirdLife International, Wellbrook Court, Girton Road, Cambridge CB3 0NA, U.K. email address: nigel.collar@birdlife.org
Plate 5. The intermediate Imperial, sandwiched between its parents. Top: Silver Pheasant Lophura nycthemera; middle "Imperial Pheasant L. imperialis"; bottom Edwards’s Pheasant L. edwardsi. Illustration by John C. Schmitt, originally published in Hennache et al. (2003), and reproduced here by kind permission of Alain Hennache.