TAXONOMIC REVIEW

Notable taxonomic changes proposed for Asian birds in 2014

T. P. INSKIPP & N. J. COLLAR

Introduction
The year 2014 appears to have been relatively sparse in journal-based taxonomic revisions of Asian birds. As always in these reviews, we seek to remain neutral and the outlining of proposals does not indicate adoption by or opinion of the Oriental Bird Club, whose checklist (Inskipp et al. 1996) is the baseline against which proposed changes are identified. Changes proposed in OBC publications (Forktail, BirdingASIA) are treated as briefly as possible.

We are aware of a short thesis proposing the split of *Prinia flaviventris* into four species (Nilsson 2014), but while we believe that accepted theses and dissertations represent valid taxonomic documents we prefer here to wait until this work, which is in Swedish, is published.

New family
In a comprehensive analysis of the Passerida, the largest passerine clade, the Spotted Wren Babbler *Elachura* (formerly *Spelaeornis*) *formosa* turned out not to be a babbler, and indeed not to be closely related to any other bird species. So long has it been separated from other lineages that Alström et al. (2014) considered the option of placing it in its own superfamily, but for the moment assigned it simply to Elachuridae. Within the Passerida, which contains 36% of all birds and 60% of all passerines, the species ‘is unique, as it is the only extant species that on its own represents one of the most basal lineages.’ Perhaps ‘Spotted Elachura’ (Plate 1) might be an appropriate English name change?

New species
Sulawesi Streaked Flycatcher *Musciaca sodhii*
Fifteen years after the existence on Sulawesi of a resident undescribed *Musciaca* flycatcher was publicised (King et al. 1999) the species was finally given a formal description following the collection of two specimens in 2011, the sound-
recording and visual description of several others and many morphological, acoustic and molecular comparisons with other taxa (Harris et al. 2014):

A small, drab gray-brown muscicapid flycatcher with indistinct facial patterning, strong dusky streaking below, and short primary projection. Differs from *Muscicapa griseisticta* in having the bill longer and more strongly hooked but relatively less broad; a weaker face pattern, with indistinct pale eyering (vs. prominent), dark spotting on throat (vs. mostly white throat), an ill-defined malar stripe and no pale moustachial stripe (vs. strong); much shorter and more rounded wing; shorter undertail coverts; and shorter, slightly more notched tail. Differs from *Muscicapa sibirica* in its longer, deeper, and, in Sino-Himalayan forms of *M. sibirica*, broader bill, much weaker head and throat pattern, much clearer streaking below, on a whitish background (vs. mostly dark background, especially in Sino-Himalayan forms); much shorter primary projection and first primary; shorter undertail coverts; and compared to *M. s. sibirica*, shorter and less notched tail. Differs from all forms of *Muscicapa daururica*, as well as *M. segregata* and *M. randi*, especially in the strongly streaked underparts of *M. sodhii*. Differs additionally from *M. daururica* in its shorter primary projection (longer only than *M. d. umbrosa*) and its more strongly hooked and, compared to *M. d. daururica*, narrower bill; from *M. randi* and *M. segregata* in its shorter tail, less extensive pale area on lower mandible, and longer undertail coverts, and from *M. segregata* in its narrower bill and shorter tarsi.

The song of the new species is higher-pitched than that of all similar Asian species, and differs from them additionally in its combination of relatively narrow bandwidth, few note repetitions, mostly clear, longer notes, few harmonics, and low similarity between adjacent strophes.

Splits in journals

Wakatobi Flowerpecker Dicaeum kuehni
Grey-sided Flowerpecker *Dicaeum celebicum* is endemic to the ‘Greater Sulawesi’ region, with races *talautensis* on Talaud, *sanghirense* on Sangihe, *celebicum* on Sulawesi, Muna and Buton, *sulaense* on the Banggai and Sula Islands, and *kuehni* on the Tukangbesi (Wakatobi) Islands (Dickinson & Christidis 2014). The form *kuehni* differs genetically from, and is larger than, at least *celebicum*, and males have a more extensive red breast, bluer, less purplish upperparts and paler grey flanks, on which basis it has been judged to represent a separate species (Kelly et al. 2014).

Owston’s Tit Sittiparus owstoni
Iriomote Tit *Sittiparus olivaceus*
Chestnut-bellied Tit *Sittiparus castaneoventris*
Varied Tit *Sittiparus varius* lives up to its name, with no fewer than eight subspecies within its relatively small range recognised in Dickinson & Christidis (2014): *varius* in the southern Kuril Islands, Japan, Korea and north-east China (Plate 3), *sunsunpi* on the Osumi Islands, *namiyei* and *owstoni* (Plate 4) on the northern and southern Izu Islands respectively, *amamii* on Tokara, Amami...
and Okinawa, the possibly extinct *orii* on the Daito Islands, *olivaceus* on Iriomote and *castaneoventris* on Taiwan (Plate 5). Molecular, morphometric and plumage analysis (this last using digital colour quantification) by McKay *et al.* (2014), who also initially accepted the race *yakushimensis* from Yakushima, resulted in the elevation of three of these subspecies, *owstoni*, *olivaceus* and *castaneoventris*, to species rank alongside *S. varius*, along with the recommendation that none of the remaining subspecies be recognised. A table in McKay *et al.* (2014) reveals that of these newly elevated forms the diminutive *castaneoventris* possesses by far the highest number of distinguishing characters.

Ogilvie-Grant’s Flycatcher Ficedula luzoniensis

A striking discovery in a molecular analysis of the genus *Ficedula* (Moyle *et al.* 2014) was the paraphyletic arrangement of Snowy-browed Flycatcher *F. hyperythra*: all Philippine samples (from Calayan, Luzon, Mindoro, Negros and Mindanao) within this ‘species’ proved to belong in a different clade from all non-Philippine samples (Myanmar, Taiwan, Borneo, Sumatra, Timor). Moyle *et al.* (2014) used the name *luzoniensis* for the Philippine species and noted:

Birds from across the range of the two clades are similar in appearance, but a difference in male plumage diagnoses each clade: males of the non-Philippine clade have the chin blackish, the same color as the lores and sides of the throat. Males of the Philippine clade have the chin whitish to orange-buff, the same color (or slightly paler) as the breast and underparts. Furthermore, males of all Philippine populations have uniformly colored tails, but males of all other populations that we have examined have small white patches at the base of the tail in the outer rectrices.

However, what are the geographical limits to *F. luzoniensis*? Taxa from Palawan (race *rara*), Sulawesi (*jugosae, annalisa*) and the Moluccas (*negroides, pallidipectus, alifura*) were not sampled, and the subspecies descriptions in Clement (2006) do not cover chin colour or the presence/absence of white patches at the tail-base. The conclusion appears incontestable (Plates 6, 7 & 8), but the application of the finding will require more museum work and, almost inevitably, a fuller genetic sampling of taxa.

Plate 6. Snowy-browed Flycatcher Ficedula hyperythra, Gn Gede, Java, Indonesia, 6 August 2012.
Horned larks *Eremophila*

Eremophila is a widespread Holarctic genus comprising two species, the extralimital monotypic Temminck’s Lark *E. bilopha*, and the Horned Lark *E. alpestris*, with 15 subspecies widespread throughout the mainland Palearctic and 27 subspecies distributed widely in North and South America. Drovetski *et al.* (2014) carried out a molecular analysis of the genus, based on samples of *E. bilopha* (5), *E. a. alpestris* (and other North American subspecies) (about 200), *E. a. flavus* from the northern Palearctic (13), *E. a. brandti* from the central Palearctic (53), *E. a. elwesi* from the Himalayas (2) (five other subspecies from the same geographical region were not sampled, including *E. a. longirostris*, the first-named subspecies of the group), *E. a. penicillata* from the Middle East (20) (four other subspecies from the same geographical range were not sampled, including *albigula*, which extends east to west China and north-west Pakistan), and the extralimital *E. a. atlas* from Morocco (2).

Sequences of one mtDNA gene, one sex-linked intron and one autosomal intron were derived. The mtDNA ND2 gene identified the six Palearctic groups named above as geographically, ecologically and phenotypically concordant clades that diverged in the Early–Middle Pleistocene, and suggested paraphyly of *E. alpestris* with respect to *E. bilopha*. In the Nearctic all samples fell within a single clade. The authors suggested splitting *E. alpestris* into five Palearctic and one Nearctic species.

Swiftlets *Aerodramus*

Rheindt *et al.* (2014) performed the most extensive molecular study on echolocating swiftlets *Aerodramus*, involving 15 of the 22 recognised species. They combined sequences of the single overlapping locus, cytochrome-β, from all previously available studies and added additional samples. Their analysis suggested the splitting of Ameline Swiftlet *A. amelis* (including *palawanensis* as a subspecies) from Uniform Swiftlet *A. vanikorensis*, as already adopted by Dickinson & Remsen (2013) (see below), although this conclusion suffers from the same lack of samples of *A. vanikorensis* from the substantial part of its range from Sulawesi to New Guinea. They also treated Volcano Swiftlet *A. vulcanorum* as a species closely related to Black-nest Swiftlet *A. maximus*, rather than conspecific with Himalayan Swiftlet *A. brevirostris*, as in Dickinson & Remsen (2013).

Suggested splits and lumps in books

Del Hoyo & Collar: world checklist (non-passerines)

A number of species-level changes in Asian non-passerine birds appeared in del Hoyo & Collar (2014), a checklist that built on the taxonomic notes of the first seven volumes of the *Handbook of the birds of the world*, making revisions based on the criteria outlined in Tobias *et al.* (2010). These changes are too numerous to annotate, so unless indicating prior work by other authors we simply provide a list (sequence following that of del Hoyo & Collar 2014).

- **Tonkin Partridge** *Arborophila tonkinensis* (from *A. chloropus*)
- **Sabah Partridge** *Arborophila graydoni* (from *A. charltoni*)
Taiwan Bamboo Partridge *Bambusicola sonorivox* (from *B. thoracicus*) (Plates 9 & 10)

Bornean Crestless Fireback *Lophura pyronota* (from *L. erythrophthalma*)

Malay Crested Fireback *Lophura rufa* (from *L. ignita*)

Burmese Collared Dove *Streptopelia xanthocycla* (from *S. decaocto*)

Western Spotted Dove *Spilopelia suratensis* (from *S. chinensis*)

Brown-capped Emerald Dove *Chalcophaps longirostris* (from *C. indica*)

Buff-eared Brown Dove *Phapitreron nigrorum* (from *P. leucotis*)

Short-billed Brown Dove *Phapitreron brevirostris* (from *P. leucotis*)

Cebu Brown Dove *Phapitreron frontalis* (from *P. amethystinus*)

Ryukyu Green Pigeon *Treron permnagus* (from *T. formosae*, confirming split of ‘rikiuensis’ in Brazil 2009)

Enggano Imperial Pigeon *Ducula oenothorax* (from *D. aenea*)

Rusty Imperial Pigeon *Ducula obiensis* (from *D. basilica*)

Nilgiri Imperial Pigeon *Ducula cuprea* (from *D. badia*)

Lompobattang Fruit Dove *Ramphiculus meridionalis* (from *R. fischeri*)

Western Superb Fruit Dove *Ptilinopus temminckii* (from *P. superbus*)

Mentawai Malkoha *Phaenicophaeus oeneicaudus* (from *P. curvirostris*)

Eastern Koel *Eudynamys orientalis* (but retaining within it as subspecies groups the taxa associated under the names cyancephalus and melanorhynchos, hence a different split than in Christidis & Boles 2008)

Asian Woollyneck *Ciconia episcopus* (from *C. microscelis*; an extralimital split)

Plumed Egret *Ardea plumifera* (from *A. intermedia*, confirming suggestion in Rasmussen & Anderton 2005)

Australian Gull-billed Tern *Gelochelidon macrotarsa* (from *G. nilotica*)

Buru Boobook *Ninox hantu* (from *N. squamipila*)

Banggai Scops Owl *Otus mendeni* (from *O. manadensis*, confirming unargued split on AVoCet http://avocet.zoology.msu.edu/recordings/3396)

Lesser Sundas Goshawk *Accipiter sylvestris* (from *A. novaehollandiae*, confirming unargued split in King 1997)

Southern Rufous Hornbill *Buceros mindanensis* (from *B. hydrocorax*)

Asian Green Bee-eater *Merops orientalis* (from *M. viridissimus* and *M. cyanophrys*; an extralimital split)

Indochinese Roller *Coracias affinis* (from *C. benghalensis*)

Sangihe Dwarf Kingfisher *Ceyx sangirensis* (from *C. fallax*)

South Philippine Dwarf Kingfisher *Ceyx mindanensis* (from *C. melanurus*, confirming possible separation mentioned by Andersen et al. 2013)

Southern Indigo-banded Kingfisher *Ceyx nigrorotris* (from *C. cyanopectus*)

Malay Blue-banded Kingfisher *Alcedo*
Thick-knee (e.g.) Eastern Water Rail after testing against the Tobias criteria, including others in the preceding ten or so years are adopted

Seram Masked Owl following the molecular study that helped establish

Australian Masked Owl from the Tanimbar Islands is absorbed into

conforming with other treatments.

(2005) but to date not widely adopted.

nivicolum and Himalayan Owl

Lumps are far fewer; only two emerge as not

Chequer-throated Yellownape

Black-headed Kingfisher

Red-headed Falcon

Lumps are far fewer; only two emerge as not

Dickinson & Christidis: world checklist (passerines)

A molecular analysis of scimitar babblers Pomatorhinus ruficollis/schisticeps by Dong et al. (2013) and reported in Collar & Inskipp (2014) concluded that the southern olivaceus group of White-browed Scimitar Babbler P. schisticeps (i.e. olivaceus, ripponi, difficilis, humilis and annamensis) grouped with Streak-breasted Scimitar Babbler P. ruficollis and recommended the transfer of these subspecies to the latter species. However, Dong et al. (2013) was not available when Dickinson & Christidis (2014) finalised their text, which has a different treatment for this complex, based on Reddy & Moyle (2011) and Song et al. (2011): ripponi is placed in schisticeps; olivaceus, humilis and annamensis in P. ruficollis; and difficilis in Chestnut-backed Scimitar Babbler P. montanus.

Reinforcements

The split by Rasmussen & Anderton (2005) of the Himalayan Bluetail or Himalayan Red-flanked Bush-robin Tarsiger rufilatus from Red-flanked Bluetail T. cyanurus, based on ‘consistent differences in morphology and song-types over wide areas’, has found support in a genetic study (Luo et al. 2014) which invokes the phylogenetic and general lineage species concepts, ‘possibly as well as biological species concept’.

The split by Rasmussen & Anderton (2005) of Przewalski’s Nuthatch Sitta przewalskii (Plate 11) from White-cheeked Nuthatch S. leucopsis (Plate 12), based on ‘major morphological and vocal differences’, is confirmed by a comprehensive phylogeny of the nuthatches Sitta, involving 21 of the 24–28 species recognised in the genus and three genes, two mitochondrial (cytochrome b and cytochrome oxidase subunit I) and one nuclear
Sitta przewalskii was found to be sister to all other nuthatches, without any close relatives.

Postscript for 2013
Dickinson & Remsen: world checklist (non-passerines)
Ameline Swiftlet Aerodramus amelis was treated by Dickinson & Remsen (2013) as a separate species (including palawanensis) citing Price et al. (2004, 2005), who compared 14 (out of a total of 24) species of Aerodramus swiftlets in a molecular study, which included two samples of A. vanikorensis palawanensis (now treated as A. amelis palawanensis by Dickinson & Remsen 2013) from Sabah and one sample of A. v. lugubris from the Solomon Islands, at the extreme eastern end of the distribution of this wide-ranging species. The two subspecies were found to occupy unrelated clades, with palawanensis close to one sample of A. mearnsi from the Philippines, whereas lugubris was closer to two Pacific island species. The significance of this is difficult to interpret without samples from the ten other subspecies of A. vanikorensis that are interpolated between these two. The following commentary on the mearnsi sample in Dickinson & Remsen (2013: 400) only adds to the complications in this case:

That this single specimen screened for DNA attributed to mearnsi might be amelis is easy to imagine; as study skins are very difficult to tell apart (as the birds are in the field), and the serious extent of historical confusion between specimens of mearnsi and amelis was explained in detail by Dickinson (1989). Most labels on Collocalia specimens retain the often erroneous names attributed to them by their collectors when they published. Without expert re-examination of the ‘mearnsi’ specimen screened in this case it is unsafe to accept that these two are not ‘good species’. Sampling of several carefully identified specimens of each is required.

Nevertheless, del Hoyo & Collar (2014) treated the forms amelis (‘Grey Swiftlet’) and palawanensis (‘Palawan Swiftlet’) as conspecific with, but also as two monotypic subspecies groups within, A. vanikorensis, the twelve other taxa forming a third (nominate) species group (‘Uniform Swiftlet’).

References

