Publications, Preprints and Other Writing

Publications

  1. C. F. Doran, A. Harder, and A. Thompson, Mirror symmetry, Tyurin degenerations and fibrations on Calabi-Yau manifolds, in String-Math 2015 (S. Li, B. Lian, W. Song, and S.-T. Yau, eds.), Proc. Symp. Pure Math., vol. 96, American Mathematical Society, 2017, pp. 93-131.

    dx.doi.org/10.1090/pspum/096/01655

    Published version | arXiv version

  2. C. F. Doran, A. Harder, and A. Thompson, Hodge numbers from Picard-Fuchs equations, SIGMA 13 (2017), 045, 23 pages.

    dx.doi.org/10.3842/SIGMA.2017.045

    Published version | arXiv version

  3. C. F. Doran, A. Harder, A. Y. Novoseltsev, and A. Thompson, Calabi-Yau threefolds fibred by mirror quartic K3 surfaces, Adv. Math. 298 (2016), 369-392.

    dx.doi.org/10.1016/j.aim.2016.03.045

    Published version | arXiv version

  4. C. F. Doran, A. Harder, A. Y. Novoseltsev, and A. Thompson, Calabi-Yau threefolds fibred by Kummer surfaces associated to products of elliptic curves, in String-Math 2014 (V. Bouchard, C. Doran, S. Méndez-Diez, and C. Quigley, eds.), Proc. Symp. Pure Math., vol. 93, American Mathematical Society, 2016, pp. 263-287.

    dx.doi.org/10.1090/pspum/093/01572

    Published version | arXiv version

  5. A. Clingher, C. F. Doran, J. Lewis, A. Y. Novoseltsev, and A. Thompson, The 14th case VHS via K3 fibrations, in Recent Advances in Hodge Theory: Period Domains, Algebraic Cycles and Arithmetic (M. Kerr and G. Pearlstein, eds.), London Math. Soc. Lecture Note Ser., vol. 427, Cambridge University Press, 2016, pp. 165-227.

    dx.doi.org/10.1017/CBO9781316387887.008

    Published version | arXiv version

  6. C. F. Doran, A. Harder, A. Y. Novoseltsev, and A. Thompson, Families of lattice polarized K3 surfaces with monodromy, Int. Math. Res. Notices (2015), no. 23, 12265-12318.

    dx.doi.org/10.1093/imrn/rnv071

    Published version | arXiv version

  7. A. Harder and A. Thompson, The geometry and moduli of K3 surfaces, in Calabi-Yau Varieties: Arithmetic, Geometry and Physics (R. Laza, M. Schütt and N. Yui, eds.), Fields Inst. Monogr., vol. 34, Springer, 2015, pp. 3-43.

    dx.doi.org/10.1007/978-1-4939-2830-9_1

    Published version | arXiv version

  8. S. A. Filippini, H. Ruddat, and A. Thompson, An introduction to Hodge structures, in Calabi-Yau Varieties: Arithmetic, Geometry and Physics (R. Laza, M. Schütt and N. Yui, eds.), Fields Inst. Monogr., vol. 34, Springer, 2015, pp. 83-130.

    dx.doi.org/10.1007/978-1-4939-2830-9_4

    Published version | arXiv version

  9. A. Thompson, Degenerations of K3 surfaces of degree two, Trans. Amer. Math. Soc. 366 (2014), no. 1, 219-243.

    dx.doi.org/10.1090/S0002-9947-2013-05759-5

    Published version | arXiv version

  10. A. Thompson, Explicit models for threefolds fibred by K3 surfaces of degree two, Canad. J. Math. 65 (2013), no. 4, 905-926.

    dx.doi.org/10.4153/CJM-2012-037-2

    Published version | arXiv version

Accepted Papers

  1. C. F. Doran and A. Thompson, Mirror symmetry for lattice polarized del Pezzo surfaces, preprint, September 2017. Accepted for publication in Commun. Number Theory Phys.

    arXiv:1709.00856

    arXiv version

Preprints

  1. V. Alexeev and A. Thompson, ADE surfaces and their moduli, preprint, December 2017.

    arXiv:1712.07932

    arXiv version

  2. C. F. Doran, A. Harder, A. Y. Novoseltsev, and A. Thompson, Calabi-Yau threefolds fibred by high rank lattice polarized K3 surfaces, preprint, January 2017.

    arXiv:1701.03279

    arXiv version

  3. V. Alexeev and A. Thompson, Modular compactification of moduli of K3 surfaces of degree 2, preprint, January 2016.

    Preprint version

D.Phil. Thesis

I graduated with a D.Phil. in Mathematics from the University of Oxford on 26th November 2011. A final copy of my thesis may be found here:

Other Writing

This page is maintained by Alan Thompson and was last updated on 22/03/18. Please email comments and corrections to amt69 (at) cam.ac.uk.